88 research outputs found

    A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats

    Get PDF
    The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain

    Prevalence of dyslipidaemia and associated risk factors in a rural population in south-western Uganda : a community based survey

    Get PDF
    BACKGROUND: The burden of dyslipidaemia is rising in many low income countries. However, there are few data on the prevalence of, or risk factors for, dyslipidaemia in Africa. METHODS: In 2011, we used the WHO Stepwise approach to collect cardiovascular risk data within a general population cohort in rural south-western Uganda. Dyslipidaemia was defined by high total cholesterol (TC) ≥ 5.2 mmol/L or low high density lipoprotein cholesterol (HDL-C) 6% (men aOR=3.00, 95%CI=1.37-6.59; women aOR=2.74, 95%CI=1.77-4.27). The odds of high TC was also higher among married men, and women with higher education or high BMI. CONCLUSION: Low HDL-C prevalence in this relatively young rural population is high whereas high TC prevalence is low. The consequences of dyslipidaemia in African populations remain unclear and prospective follow-up is required

    Allopregnanolone Promotes Regeneration and Reduces β-Amyloid Burden in a Preclinical Model of Alzheimer's Disease

    Get PDF
    Previously, we demonstrated that allopregnanolone (APα) promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ) and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD). In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD) pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R), three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing the pathology associated with Alzheimer's disease

    Ovarian cancer risk factors by tumor aggressiveness: an analysis from the Ovarian Cancer Cohort Consortium

    Get PDF
    Ovarian cancer risk factors differ by histotype; however, within subtype there is substantial variability in outcomes. We hypothesized that risk factor profiles may influence tumor aggressiveness, defined by time between diagnosis and death, independent of histology. Among 1.3 million women from 21 prospective cohorts, 4,584 invasive epithelial ovarian cancers were identified and classified as highly aggressive (death in <1 year, n=864), very aggressive (death in 1-<3 years, n=1,390), moderately aggressive (death in 3-<5 years, n=639), and less aggressive (lived 5+ years, n=1,691). Using competing risks Cox proportional hazards regression, we assessed heterogeneity of associations by tumor aggressiveness for all cases and among serous and endometrioid/clear cell tumors. Associations between parity (phet =0.01), family history of ovarian cancer (phet =0.02), body mass index (BMI; phet ≤0.04) and smoking (phet <0.01) and ovarian cancer risk differed by aggressiveness. A first/single pregnancy, relative to nulliparity, was inversely associated with highly aggressive disease (HR: 0.72; 95% CI [0.58-0.88]), no association was observed for subsequent pregnancies (per pregnancy, 0.97 [0.92-1.02]). In contrast, first and subsequent pregnancies were similarly associated with less aggressive disease (0.87 for both). Family history of ovarian cancer was only associated with risk of less aggressive disease (1.94 [1.47-2.55]). High BMI (≥35 vs. 20-<25 kg/m2 , 1.93 [1.46-2.56] and current smoking (vs. never, 1.30 [1.07-1.57]) were associated with increased risk of highly aggressive disease. Results were similar within histotypes. Ovarian cancer risk factors may be directly associated with subtypes defined by tumor aggressiveness, rather than through differential effects on histology. Studies to assess biological pathways are warranted

    NF90 Binds the Dengue Virus RNA 3′ Terminus and is a Positive Regulator of Dengue Virus Replication

    Get PDF
    Background Viral RNA translation and replication are regulated by sequence and structural elements in the 5′ and 3′ untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5′ m7GpppG cap, and a conserved 3′-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3′ terminus. Methodology/Principal Findings Proteins eluted from a dengue 3′ SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. Conclusions/Significance The results indicate that NF90 interacts with the 3′ SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.Ruth L. Kirschstein National Research Service Award (NIH-NRSA GM64985)UNCF-Merck Postdoctoral FellowshipNational Institute of Allergy and Infectious Diseases (U.S.)Ellison Medical Foundatio

    A Therapeutic Antibody against West Nile Virus Neutralizes Infection by Blocking Fusion within Endosomes

    Get PDF
    Defining the precise cellular mechanisms of neutralization by potently inhibitory antibodies is important for understanding how the immune system successfully limits viral infections. We recently described a potently inhibitory monoclonal antibody (MAb E16) against the envelope (E) protein of West Nile virus (WNV) that neutralizes infection even after virus has spread to the central nervous system. Herein, we define its mechanism of inhibition. E16 blocks infection primarily at a post-attachment step as antibody-opsonized WNV enters permissive cells but cannot escape from endocytic compartments. These cellular experiments suggest that E16 blocks the acid-catalyzed fusion step that is required for nucleocapsid entry into the cytoplasm. Indeed, E16 directly inhibits fusion of WNV with liposomes. Additionally, low-pH exposure of E16–WNV complexes in the absence of target membranes did not fully inactivate infectious virus, further suggesting that E16 prevents a structural transition required for fusion. Thus, a strongly neutralizing anti–WNV MAb with therapeutic potential is potently inhibitory because it blocks viral fusion and thereby promotes clearance by delivering virus to the lysosome for destruction

    The importance of Antarctic krill in biogeochemical cycles

    Get PDF
    Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins – but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean’s largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill

    CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    Get PDF
    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer.

    Get PDF
    Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.CRUK, NIH, fp7 Numerous funders. Details can be found within the financial support section of the manuscript
    corecore