1,573 research outputs found

    Current and future multimodal learning analytics data challenges

    Get PDF
    Multimodal Learning Analytics (MMLA) captures, integrates and analyzes learning traces from different sources in order to obtain a more holistic understanding of the learning process, wherever it happens. MMLA leverages the increasingly widespread availability of diverse sensors, highfrequency data collection technologies and sophisticated machine learning and artificial intelligence techniques. The aim of this workshop is twofold: first, to expose participants to, and develop, different multimodal datasets that reflect how MMLA can bring new insights and opportunities to investigate complex learning processes and environments; second, to collaboratively identify a set of grand challenges for further MMLA research, built upon the foundations of previous workshops on the topic

    2nd Crossmmla: Multimodal learning analytics across physical and digital spaces

    Get PDF
    © 2018 CEUR-WS. All Rights Reserved. Students’ learning is ubiquitous. It happens wherever the learner is rather than being constrained to a specific physical or digital learning space (e.g. the classroom or the institutional LMS respectively). A critical question is: how to integrate and coordinate learning analytics to provide continued support to learning across physical and digital spaces? CrossMMLA is the successor to the Learning Analytics Across Spaces (CrossLAK) and MultiModal Learning Analytics (MMLA) series of workshops that were merged in 2017 after successful cross-pollination between the two communities. Although it may be said that CrossLAK and MMLA perspectives follow different philosophical and practical approaches, they both share a common aim. This aim is: deploying learning analytics innovations that can be used across diverse authentic learning environments whilst learners feature various modalities of interaction or behaviour

    Ecohydrology and ecosystem services of a natural and an artificial bofedal wetland in the central Andes

    Get PDF
    High-altitude wetlands of the Central Andes, locally known as bofedales, provide important ecosystem services, particularly carbon storage, forage provisioning, and water regulation. Local communities have artificially expanded bofedales by irrigating surrounding grasslands to maximise areas for alpaca grazing. Despite their importance, biophysical processes of both natural and artificial bofedales are still poorly studied, which hinders the development of adequate management and conservation strategies. We analyse and compare the vegetation composition, hydrological variables, groundwater chemistry, and soil characteristics of a natural and an artificial bofedal of at least 10 years old in southern Peru, to understand their interrelations and the consequences for ecosystem service provisioning. We do not find statistically significant differences in the soil, water, and vegetation characteristics. Soil organic carbon (SOC) content, which we use as a proxy for carbon storage, is negatively correlated to dissolved oxygen, pH, and soil water temperature. In addition, Non-Metric Multidimensional Scaling analysis shows a positive relation between plant community composition, SOC content, and water electric conductivity. Our results suggest a three-way interaction between hydrological, soil, and vegetation characteristics in the natural bofedal, which also holds for the artificial bofedal. Vegetation cover of two of the most highly nutritious species for alpaca, Lachemilla diplophylla and Lilaeopsis macloviana with 19-22% of crude protein, are weakly or not correlated to environmental variables, suggesting grazing might be obscuring these potential relationships. Given the high economic importance of alpaca breeding for local communities, expanding bofedales artificially appears an effective strategy to enhance their ecosystem services with minimal impact on the ecohydrological properties of bofedales

    Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Get PDF
    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle

    Impact of COVID-19 pandemic on asthma symptoms and management: A prospective analysis of asthmatic children in Ecuador

    Get PDF
    Background Asthma affects up to 33% of children in Latin American settings. The ongoing COVID-19 pandemic has had a significant impact on access to and use of health services. We aimed to evaluate the impact of the COVID-19 lockdown on asthma exacerbations, medical facility visits, and use of asthma medications in children. Methods We used data from a prospective cohort of 213 children aged 5–17 years in 3 Ecuadorian cities and analysed the impact of the COVID-19 lockdown on asthma. Outcomes (asthma exacerbations, emergency room [ER] visits, planned and unplanned outpatient visits, and use of inhaled corticosteroids and Beta-2 agonists) were analysed using repeated Poisson counts (ie, number of events per participant before and during the COVID-19 lockdown). Results During compared to before lockdown: a) the number of asthma exacerbations remained constant (IRR, 0.87; 95% CI: 0.72–1.05; p = 0.152); b) outpatient visits (IRR 0.26, 95% CI 0.14–0.47, p < 0.001) declined 74% while ER visits declined 89% (IRR 0.11, 95% CI 0.04–0.32, p < 0.001); and c) there was no change in inhaled corticosteroids use (IRR 1.03, 95% CI 0.90–1.16, P = 0.699) while Beta-2 agonist use increased (IRR 1.32, 95% CI 1.10–1.58, P = 0.003). Conclusions In a cohort of Ecuadorian children with asthma, health services attendance decreased dramatically after COVID-19 lockdown, but asthma exacerbations and use of inhaled corticosteroids were unchanged. Future analyses will address the question of the effect of SARS-CoV-2 infection on asthma exacerbations and control in this paediatric population

    In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili

    Get PDF
    An in vitro regeneration protocol was developed for Capsicum chinense Jacq. cv. Naga King Chili, a very pungent chili cultivar and an important horticultural crop of Nagaland (Northeast India). Maximum number of shoot (13 ± 0.70) was induced with bud-forming capacity (BFC) index of 10.8, by culturing nodal segments in Murashige and Skoog (MS) medium supplemented with 18.16 μM Thidiazuron (TDZ) followed by 35.52 μM 6-benzylaminopurine (BAP). Using shoot tips as explants, multiple shoot (10 ± 0.37) (BFC 8.3) was also induced in MS medium fortified with either 18.16 μM TDZ or 35.52 μM BAP. Elongated shoots were best rooted in MS medium containing 5.70 μM indole-3-acetic acid (IAA). Rooted plantlets thus developed were hardened in 2–3 weeks time in plastic cups containing potting mixture of a 1:1 mix of soil and cow dung manure and then subsequently transferred to earthen pots. The regenerated plants did not show any variation in the morphology and growth as compared to the parent plant

    Influence of socioeconomic status on community-acquired pneumonia outcomes in elderly patients requiring hospitalization: a multicenter observational study

    Get PDF
    The associations between socioeconomic status and community-acquired pneumonia outcomes in adults have been studied although studies did not always document a relationship. The aim of this multicenter observational study was to determine the association between socioeconomic status and community-acquired pneumonia outcomes in the elderly, in the context of a public health system providing universal free care to the whole population

    Large deep-sea zooplankton biomass mirrors primary production in the global ocean

    Get PDF
    The biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y(-1) transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration
    • …
    corecore