402 research outputs found
A computationally efficient method for hand–eye calibration
Purpose: Surgical robots with cooperative control and semiautonomous features have shown increasing clinical potential, particularly for repetitive tasks under imaging and vision guidance. Effective performance of an autonomous task requires accurate hand–eye calibration so that the transformation between the robot coordinate frame and the camera coordinates is well defined. In practice, due to changes in surgical instruments, online hand–eye calibration must be performed regularly. In order to ensure seamless execution of the surgical procedure without affecting the normal surgical workflow, it is important to derive fast and efficient hand–eye calibration methods. Methods: We present a computationally efficient iterative method for hand–eye calibration. In this method, dual quaternion is introduced to represent the rigid transformation, and a two-step iterative method is proposed to recover the real and dual parts of the dual quaternion simultaneously, and thus the estimation of rotation and translation of the transformation. Results: The proposed method was applied to determine the rigid transformation between the stereo laparoscope and the robot manipulator. Promising experimental and simulation results have shown significant convergence speed improvement to 3 iterations from larger than 30 with regard to standard optimization method, which illustrates the effectiveness and efficiency of the proposed method
Interactions between downslope flows and a developing cold-air pool
A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe
Identification of Genetic and Epigenetic Variations in a Rat Model for Neurodevelopmental Disorders
A combination of genetic variations, epimutations and environmental factors may be involved in the etiology of complex neurodevelopmental disorders like schizophrenia. To study such disorders, we use apomorphine-unsusceptible (APO-UNSUS) Wistar rats and their phenotypic counterpart apomorphine-susceptible (APO-SUS) rats that display a complex phenotype remarkably similar to that of schizophrenic patients. As the molecular basis of the APO-SUS/UNSUS rat model, we recently identified a genomic rearrangement of the Aph-1b gene. Here, we discovered between the two rat lines differences other than the Aph-1b gene defect, including a remarkable cluster of genetic variations, two variants corresponding to topoisomerase II-based recombination hot spots and an epigenetic (DNA methylation) difference in cerebellum and (hypo)thalamic but not hippocampal genomic DNA. Furthermore, genetic variations were found to correlate with the degree of apomorphine susceptibility in unselected Wistar rats. Together, the results show that a number of genetic and epigenetic differences exist between the APO-SUS and -UNSUS rat genomes, raising the possibility that in addition to the Aph-1b gene defect the newly identified variations may also contribute to the complex APO-SUS phenotype
The diversification of Heliconius butterflies: what have we learned in 150 years?
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.RMM is funded by a Junior Research Fellowship at King’s College, Cambridge. KMK is supported by the Balfour Studentship, University of Cambridge, SHMa by a Research Fellowship at St John's College, Cambridge, and SHMo by a Research Fellowship from the Royal Commission for the Exhibition of 1851. Our work on Heliconius has been additionally supported by the Agence Nationale de la Recherche (France), the Biology and Biotechnology Research Council (UK), the British Ecological Society, the European Research Council, the Natural Environment Research Council (UK), and the Smithsonian Tropical Research Institute.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/jeb.1267
Physics Opportunities of e+e- Linear Colliders
We describe the anticipated experimental program of an e+e- linear collider
in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current
collider designs and the expected experimental environment. We then discuss
precision studies of the W boson and top quark. Finally, we review the range of
models proposed to explain the physics of electroweak symmetry breaking and
show, for each case, the central role that the linear collider experiments will
play in elucidating this physics. (to appear in Annual Reviews of Nuclear and
Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde
Optimal constraint-based decision tree induction from itemset lattices
International audienceIn this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding optimal decision trees in a wide range of applications by post-processing a set of patterns: we use local patterns to construct a global model. We exploit the connection between constraints in pattern mining and constraints in decision tree induction to develop a framework for categorizing decision tree mining constraints. This framework allows us to determine which model constraints can be pushed deeply into the pattern mining process, and allows us to improve the state-of-the-art of optimal decision tree induction
A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features.
Childhood onset clinical syndromes involving intellectual disability and dysmorphic features, such as polydactyly, suggest common developmental pathways link seemingly unrelated phenotypes. We identified a consanguineous family of Saudi origin with varying complex features including intellectual disability, speech delay, facial dysmorphism and polydactyly. Combining, microarray based comparative genomic hybridisation (CGH) to identify regions of homozygosity, with exome sequencing, led to the identification of homozygous mutations in five candidate genes (RSPH6A, ANKK1, AMOTL1, ALKBH8, TRAPPC6A), all of which appear to be pathogenic as predicted by Proven, SIFT and PolyPhen2 and segregate perfectly with the disease phenotype. We therefore looked for differences in expression levels of each protein in HEK293 cells, expressing either the wild-type or mutant full-length cDNA construct. Unexpectedly, wild-type TRAPPC6A appeared to be unstable, but addition of the proteasome inhibitor MG132 stabilised its expression. Mutations have previously been reported in several members of the TRAPP complex of proteins, including TRAPPC2, TRAPPC9 and TRAPPC11, resulting in disorders involving skeletal abnormalities, intellectual disability, speech impairment and developmental delay. TRAPPC6A joins a growing list of proteins belonging to the TRAPP complex, implicated in clinical syndromes with neurodevelopmental abnormalities
QTL analysis of measures of mouse home-cage activity using B6/MSM consomic strains
The activity of mice in their home cage is influenced greatly by the cycle of light and dark. In addition, home-cage activity shows remarkable time-dependent changes that result in a prominent temporal pattern. The wild-derived mouse strain MSM/Ms (MSM) exhibits higher total activity in the home cage than does C57BL/6 (B6), a commonly used laboratory strain. In addition, there is a clear strain difference in the temporal pattern of home-cage activity. This study aimed to clarify the genetic basis of strain differences in the temporal pattern of home-cage activity between MSM and B6. Through the comparison of temporal patterns of home-cage activity between B6 and MSM, the pattern can be classified into five temporal components: (1) resting phase, (2) anticipation phase, (3) 1st phase, (4) 2nd phase, and (5) 3rd phase. To identify quantitative trait loci (QTLs) involved in these temporal components, we used consomic strains established from crosses between B6 and MSM. Five consomic strains, for Chrs 2T (telomere), 3, 4, 13, and 14, showed significantly higher total activity than B6. In contrast, the consomic strains of Chrs 6C (centromere), 7T, 9, 11, and 15 were less active than B6. This indicates that multigenic factors regulate the total activity. Further analysis showed an impact of QTLs on the temporal components of home-cage activity. The present data showed that each temporal component was regulated by different combinations of multigenic factors, with some overlap. These temporal component-related QTLs are important to understand fully the genetic mechanisms that underlie home-cage activity
Hippocampal Gene Expression Analysis Highlights Ly6a/Sca-1 as Candidate Gene for Previously Mapped Novelty Induced Behaviors in Mice
In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness
- …