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Abstract
Purpose Surgical robots with cooperative control and semi-
autonomous features have shown increasing clinical poten-
tial, particularly for repetitive tasks under imaging and vision
guidance. Effective performance of an autonomous task
requires accurate hand–eye calibration so that the transfor-
mation between the robot coordinate frame and the camera
coordinates is well defined. In practice, due to changes in
surgical instruments, online hand–eye calibration must be
performed regularly. In order to ensure seamless execution
of the surgical procedure without affecting the normal sur-
gical workflow, it is important to derive fast and efficient
hand–eye calibration methods.
Methods We present a computationally efficient iterative
method for hand–eye calibration. In thismethod, dual quater-
nion is introduced to represent the rigid transformation, and a
two-step iterative method is proposed to recover the real and
dual parts of the dual quaternion simultaneously, and thus the
estimation of rotation and translation of the transformation.
Results The proposed method was applied to determine the
rigid transformation between the stereo laparoscope and the
robot manipulator. Promising experimental and simulation
results have shown significant convergence speed improve-
ment to 3 iterations from larger than 30 with regard to
standard optimization method, which illustrates the effec-
tiveness and efficiency of the proposed method.
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Introduction

With increasing maturity of master–slave surgical robots,
research in robotically assisted minimally invasive surgery
has now focussed on the development of cooperative con-
trol and automation of certain repetitive surgical steps such
as suturing, ablation, and microscopic image scanning [1–
3]. This is beneficial for the operating surgeon who can
share control with the robot on low-level surgical maneu-
vers, freeing both perceptual and cognitive capacity on
more demanding tasks that require direct human interac-
tion [4]. Thus far, the use of vision guidance augmented
with pre- and intra-operative imaging such as CT, MR and
ultrasound has been applied to a range of surgical tasks
including neurosurgery, orthopaedics, and cardiothoracic
interventions [5–9]. However, in order to perform effec-
tive image-guided interventions, it is essential to recover
the transformation between the robot coordinate frame and
the endoscopic camera coordinates, which is a well-known
hand–eye calibration problem in robotics.

In general, any rigid transformation can be described by
two parameters: a translation vector and a rotation matrix.
Thus far, a number of closed-form solutions have been
proposed for hand–eye calibration. For example, Shiu and
Ahmad [10] proposed to solve the robot–sensor calibra-
tion problem by estimating the orientational component and
translational component separately. The orientation compo-
nent was derived by utilizing the angle–axis formulation
of rotation, while the translational component could be
solved using standard linear system techniques once the rota-
tional part is estimated. To simplify the process, Park and
Martin [11] proposed a solution for the orientation compo-
nent by taking advantage of Lie group theory to transform
the orientation component into a linear system. Chou and
Kamel [12] introduced quaternion to represent orientation
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and re-formulated the determination of the rotation matrix
as a homogeneous linear least squares problem. Closed-
form solution was then derived using the generalized inverse
methodwith singular value decomposition analysis. Alterna-
tively, Liang and Mao [13] applied the Kronecker product to
get the homogeneous linear equation for the rotation matrix.
Pan et al. [14] and Najifi et al. [15] also presented similar
work. However, all the aforementioned methods separated
the orientation component from the positional component,
and errors in the rotation estimation could be propagated
into the translational estimations.

Simultaneous solutions for rotational and translational
components were also presented in the past decades. For
instance, Lu and Chou [16] derived an eight-space for-
mulation based on quaternion to obtain the least squares
solution for the hand–eye calibration problem using the
Gaussian elimination and Schur decomposition analysis.
Daniilidis [17] introduced the idea of dual quaternion param-
eterization, which facilitated a new simultaneous solution
for the hand–eye rotation and translation using singular
value decomposition. Zhao and Liu [18] employed the screw
motion theory to establish a hand–eye matrix equation by
using quaternion, resulting in a simultaneous result for rota-
tion and translation by solving linear equations. Andreff et
al. [19] applied the Kronecker product to re-formulate the
robot–sensor problem into a linear system. Least square solu-
tions were derived to simultaneously solve the robot–sensor
problem. Although all these methods can estimate rotational
and translational components for the hand–eye calibration
problems simultaneously, many of them involve complicated
derivations.

To circumvent this problem, researchers tend to move
from closed-form solutions to iterative methods due to its
high efficiency and simplicity. The basic idea of iterative
method is to minimize the difference between the left and
right parts of the hand–eye equation or its variations. Thus
far, a number of solutions have been proposed. For instance,
Schmidt et al. [20] constructed a cost function using dual
quaternion and quaternion multiplication properties, and
classic optimizationmethodwas then applied tominimize the
cost function. Strobl and Hirzinger [21] proposed a weight-
ing schemes to construct a cost function. Similarly, they
also applied classic nonlinear optimization method to solve
the cost function minimization problem. Mao et al. [22]
applied Kronecker product to establish a nonlinear objective
function and then derived the iterative Jacobian formula to
find the optimized solution using Gauss–Newton method or
Levenberg–Marquet method. Zhao [23] proposed to use con-
vex optimization, which can solve the hand–eye calibration
problem in the form of a global linear optimization with-
out starting values. Ruland et al. [24] proposed to integrate
the hand–eye calibration problem into a branch-and-bound
parameter space search. The presented method constituted

the first guaranteed globally optimal estimator for simulta-
neous optimization of both components with respect to a cost
function based on re-projection errors. Ackerman et al. [25]
presented a unified algorithm which used gradient descent
optimization on the Euclidean group. They also applied fil-
tering to update the calibration parameters online based on
new incoming data. Heller et al. [26,27] presented several
formulations of hand–eye calibration that led to multivari-
ate polynomial optimization problems. Convex linear matrix
inequality (LMI) relaxation was used to effectively solve
these problems and to obtain globally optimal solutions.
Wu et al. [28] and Sarrazin et al. [29] also presented sim-
ilar ideas for hand–eye calibration between robotic system
and vision/ultrasound systems. All these methods can solve
the hand–eye calibration problem, albeit being complex to
implement in practice and involving complicated calcula-
tions. It also results in low efficiency, which may be not
applicable to scenarios where online hand–eye calibration
must be performed regularly.

In practice, the hand–eye calibration may need to be done
frequently due to changes in surgical instruments and in the
case of using pickup probes, their position related to the end
effector is not always the same. Figure 1 shows an example
of re-projection of da Vinci surgical instruments on laparo-
scopic images. The top left frame illustrates the re-projection
right after the calibration where the error is minimal. As the
instruments aremoved away, the re-projection (shown in red)
errors start to build up; therefore, online hand–eye calibration
must be performed regularly. In order to ensure seamless exe-
cution of the surgical procedure without affecting the normal
surgical workflow, it is important to derive a computationally
efficient iterative method for solving hand–eye calibration.
The contributions of the paper include:

– We proposed a two-step iterative method that can recover
the real part and dual part of the dual quaternion effi-
ciently and fast;

– We theoretically proved the convergence of the proposed
two-step iteration method.

The proposed method was applied to determine the rigid
transformation between the stereo laparoscope and the robot
manipulator. Promising experimental and simulation results
have shown significant convergence speeds improvement
to 3 iterations from larger than 30 with regard to standard
optimization method, which illustrates the effectiveness and
efficiency of the proposed method.

The rest of the paper is organized as follows. The mathe-
matical details of hand–eye calibration are given in “Problem
statement” section. The proposed two-step iterative method
is then introduced in “Two-step iterative method” section.
Experimental results and conclusions are provided in “Exper-
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Fig. 1 An example of re-projection of daVinci surgical instruments by
using kinematic re-projection of the model directly onto laparoscopic
images. a The re-projection right after the calibration; b–f as time pro-
gresses and the instruments aremoved away, the re-projection (shown in

red) errors start to build up. Real-time hand–eye calibration is therefore
required to re-estimate the transformation between the robot coordinate
frame and the camera coordinates

imental and simulation results and Conclusion” sections,
respectively.

Problem statement

The most common way to describe the hand–eye calibration
problem is using the homogeneous transformation matrix as:

AX = XB (1)

where A and B are known homogeneous matrices, and X
is the unknown transformation between the robot coordinate
frame and camera coordinate frame. For each homogeneous
matrix, it is in the form of

[
R t
0 1

]
(2)

where R is a 3 × 3 rotational matrix, and t is a 3 × 3 trans-
lational vector. Thus, we can expand Eq. (1) as

[
RA tA
0 1

]
·
[
RX tX
0 1

]
=

[
RX tX
0 1

]
·
[
RB tB
0 1

]
(3)

where RA, RX and RB are the rotational matrix parts of A, X
and B, and tA, tX and tB are the translational parts, respec-
tively. Equation (3) can be further simplified as:

[
RARX RAtX + tA
0 1

]
=

[
RX RB RX tB + tX

0 1

]
. (4)

The purpose of hand–eye calibration is to find RX and
tX given J pair of Ai and the corresponding Bi , where i =
1, 2 . . . J . We can have the estimation as:

{R̂X , t̂X } = argmin
RX ,tx

{
f (RX , tX )

}
(5)

subject to

RX · RT
X = I (6)

and

det(RX ) = 1 (7)

where I is the identify matrix of order 3, and det(·) is the
determinant of a 3 × 3 matrix. The cost function f (RX , tX )

can be defined as:

f (RX , tX ) =
J∑

i=1

∥∥∥Ai X − XBi
∥∥∥ (8)

or

f (RX , tX )

=
J∑

i=1

{∥∥∥RAiRX −RXRBi

∥∥∥+
∥∥∥RAi tX +tAi−RX tBi −tX

∥∥∥} (9)

where ‖ · ‖ is the Frobenius norm. Many algorithms, such
as active set algorithm [30], interior point algorithm [31],
sequential quadratic programming (SQP) algorithm [32] and
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so on, have been proposed so far to solve the above con-
strained minimization problem, but these methods tend to
calculate the Jacobian matrix and Hessian matrix, which
are computationally expensive. In the next section, we will
present a simple two-step iterative method to solve the above
constrained optimization problem.

Two-step iterative method

In order to convert the hand–eye calibration from the homo-
geneous transformation matrix format into dual quaternion
representation, a short introduction of quaternion is therefore
given at the beginning of this section.

Quaternion and dual quaternion

According to theEuler’s rotation theorem, any rotation can be
expressed as a unit quaternion q. Given any two unit quater-
nions p = (p0, vp) and q = (q0, vq), the multiplication of
p and q can be represented as [33,34]:

p ⊗ q = R(q)p (10)

or

p ⊗ q = L(p)q (11)

where ⊗ represents quaternion multiplication,

R(q) =
[
q0 −vTq
vq q0 · I + �vq×�

]
(12)

and

L(p) =
[
p0 −vTp
vp p0 · I − �vp×�

]
. (13)

Here, �×� is the skew-symmetric matrix/cross-product oper-
ator.

In practice, quaternion can only be used to represent ori-
entation. In order to represent orientation and translation
together, quaternion is combined with dual number theory
to form dual quaternion [35]. Each dual quaternion consists
of two quaternions as:

q̆ = qr + qdε (14)

where ε is the dual number, qr and qd are quaternion. Given
any two dual quaternion p̆ = pr + pdε and q̆ , the multipli-
cation can be defined as:

q̆ ⊗ p̆ = qr ⊗ pr + (qr ⊗ pd + qd ⊗ pr )ε. (15)

For any homogeneous transformation in the form of

[
R t
0 1

]
, (16)

the corresponding dual quaternion representation q̆ can be
defined as:
⎧⎨
⎩
qr = D2q(R)

qd = 1

2
qr ⊗ t

(17)

where D2q(·) is the operator to convert a rotation matrix to
the corresponding unit quaternion, and t is taken as a pure
quaternion with 0 scale part [34,35].

Two-step iteration

For any i (i = 1, 2 . . . J ), we have

Ai X = XBi . (18)

Denote

q̆Ai = qr,Ai + qd,Ai ε

q̆Bi = qr,Bi + qd,Bi ε

q̆X = qr,X + qd,Xε

(19)

as the qual-quaternion representation for Ai , Bi and X ,
respectively, Eq. (18) can thus be written as:

q̆X ⊗ q̆Ai = q̆Bi ⊗ q̆X . (20)

According to Eq. (15), the above equation can be expanded
as:

qr,X ⊗ qr,Ai + (qr,X ⊗ qd,Ai + qd,X ⊗ qr,Ai )ε

= qr,Bi ⊗ qr,X + (qr,Bi ⊗ qd,X + qd,Bi ⊗ qr,X )ε. (21)

Therefore, we can have

qr,X ⊗ qr,Ai = qr,Bi ⊗ qr,X (22)

and

qr,X⊗ qd,Ai +qd,X⊗ qr,Ai = qr,Bi ⊗ qd,X+qd,Bi ⊗ qr,X (23)

According to Eqs. (10) and (11), Eq. (22) can then be written
as:

(L(qr,Bi ) − R(qr,Ai )
)
qr,X = 0 (24)

and Eq. (23) can be written as:

(R(qd,Ai )−L(qd,Bi )
)
qr,X =(L(qr,Bi )−R(qr,Ai )

)
qd,X . (25)
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Therefore, we can have:

Hl,i qr,X = Hr,i qd,X (26)

where

Hl,i =
[L(qr,Bi ) − R(qr,Ai )

R(qd,Ai )−L(qd,Bi )

]
(27)

and

Hr,i =
[

04×4

L(qr,Bi )−R(qr,Ai )

]
. (28)

Define

Hl =

⎡
⎢⎢⎢⎣

Hl,1

Hl,2
...

Hl,J

⎤
⎥⎥⎥⎦ (29)

and

Hr =

⎡
⎢⎢⎢⎣

Hr,1

Hr,2
...

Hr,J

⎤
⎥⎥⎥⎦ (30)

we can have

Hl · qr,X = Hr · qd,X (31)

and given any initial value for qr,X as q0r,X , qr,X and qd,X can
be estimated as:

1. Set index n = 1;
2. Calculate qnd,X as:

qnd,X = H+
r · Hl · qn−1

r,X (32)

where (·)+ is the pseudo-inverse operator.
3. Calculate qnr,X as

qnr,X = H+
l · Hr · qnd,X . (33)

4. Set n = n + 1 and repeat steps 2− 4 until qnr,X and qnd,X
converge.

5. Re-scale the magnitudes and set the qr,X and qd,X esti-
mates as

q̂r,X = qnr,X
‖qnr,X‖

q̂d,X = qnr,X
‖qnr,X‖q

n
d,X .

(34)

6. The estimation of X can thus be calculated as:

X̂ =
[
q2D(q̂r,X ) 2 · (q̂r,X )∗ ⊗ q̂d,X

0 1

]
(35)

where q2D(·) is the operator to convert a unit quaternion
to the corresponding rotation matrix and ∗ represents the
quaternion conjugate. To make the dimension of X cor-
rect, only the vector part of quaternion 2 · (q̂r,X )∗ ⊗ q̂d,X

is selected in the above equation [34].

Theorem 1 Theqnr,X andqnd,X canalways converge to obtain
the ground truth for qr,X and qd,X via the two-step iteration
methods.

Proof Similar to Eq. (5), the purpose of the two-step iteration
is to minimize
∥∥∥Hl · qr,X − Hr · qd,X

∥∥∥ (36)

which means that qnr,X and qnd,X can converge to obtain the
ground truth for qr,X and qd,X only if:

∥∥∥Hl · qnr,X−Hr · qn+1
d,X

∥∥∥ �
∥∥∥Hl · qnr,X − Hr · qnd,X

∥∥∥ (37)

and
∥∥∥Hl · qnr,X−Hr · qnd,X

∥∥∥ �
∥∥∥Hl · qn−1

r,X − Hr · qnd,X

∥∥∥. (38)

For Eq. (37), we can have

∥∥∥Hl · qnr,X − Hr · qn+1
d,X

∥∥∥
=

∥∥∥Hl · qnr,X − Hr · H+
r · Hl · qnr,X

∥∥∥
=

∥∥∥(I − Hr · H+
r ) · Hl · qnr,X

∥∥∥ (39)

For any matrices Υ and Ψ , ‖I − Υ +Υ ‖ < ‖I − Ψ +Υ ‖ is
always satisfied unless Υ = Ψ [36], so

∥∥∥Hl · qnr,X − Hr · qn+1
d,X

∥∥∥
�

∥∥∥(
I − Hr · H+

r · Hl · qn−1
r,X (Hl · qnr,X )+

)
Hl · qnr,X

∥∥∥
=

∥∥∥Hl · qnr,X − Hr · H+
r · Hl · qn−1

r,X

∥∥∥
=

∥∥∥Hl · qnr,X − Hr · qnd,X

∥∥∥. (40)

For Eq. (38), we can also have

∥∥∥Hl · qnr,X − Hr · qnd,X

∥∥∥
=

∥∥∥Hl · H+
l · Hr · qnd,X − Hr · qnd,X

∥∥∥
=

∥∥∥(Hl · H+
l − I )Hr · qnd,X

∥∥∥ (41)
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Fig. 2 The hand–eye data were
collected using the da Vinci
Research Kit (DVRK): the pose
of the tool in the robot base
coordinate was obtained via the
robot forward kinematics, while
the corresponding pattern pose
in the camera coordinate was
derived using a pair of stereo
images containing the pattern

Similar to Eq. (40), we can have

∥∥∥Hl · qnr,X − Hr · qnd,X

∥∥∥
�

∥∥∥(
Hl · H+

l · Hr · qn−1
d,X

·(Hr · qnd,X )+ − I
)
Hr · qnd,X

∥∥∥
=

∥∥∥Hl · H+
l · Hr · qn−1

d,X − Hr · qnd,X

∥∥∥
=

∥∥∥Hl · qn−1
r,X − Hr · qnd,X

∥∥∥ (42)

��

Experimental and simulation results

In order to evaluate the performance of the proposed hand–
eye calibration algorithm, detailed simulation and laboratory
experiments were carried out. The simulation study was
based on the Monte Carlo method, which was carried out on
a workstation with 3.40GHz Intel Core i7 processor and 16G
RAM. For the experimental results presented in this paper, as
shown in Fig. 2, the hand–eye data were collected using the
da Vinci Research Kit (DVRK) which included mechanical
components from the first-generation da Vinci robotic surgi-
cal system [37] and controllers/software APIs developed by
Johns Hopkins University [38]. A stereo laparoscope held by

a robotic arm was used to capture various poses of a calibra-
tion pattern that contains 21 key dots. The pattern is grasped
by a surgical needle driver tool that is controlled by a patient
side manipulator (PSM). During the experiment, the pattern
wasmoved to different position and orientation of the robot’s
workspace. The pose of the tool in the robot base coordinate
was obtained via the robot forward kinematics, while a corre-
sponding pattern pose in the camera coordinate was derived
using a pair of stereo images containing the pattern.

Simulation study

In practical experiments, it is difficult to know the ground
truth of the rigid transformation between camera coordinate
system and robot coordinate system; therefore, we resort to
simulation study with known parameters. In this simulation,
the rotation part of a rigid transformation X was randomly
set by the ZY X convention Euler angles as roll−0.7309 rad,
pitch 0.0513 rad andyaw−2.0804 rad,while the translational
vector was set as [0.7822, 0.1513, −0.4811]T (unit meter).
Thus, the random rigid transformation X can be written as:

X =

⎡
⎢⎢⎣

0.7436 −0.6667 −0.0513 0.7822
−0.3590 −0.3333 −0.8718 0.1513
0.5641 0.6667 −0.4872 −0.4811

0 0 0 1

⎤
⎥⎥⎦ .
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and 5 pairs of Ai and the corresponding Bi were then gener-
ated basedon the X within a space of 0.25m×0.25m×0.25m.

To simulate the orientation estimation error in the Ai ,
a random selected 3 × 1 vector δvi with less than 0.035
magnitude [(to make sure the rotation angle is less than our
empirical value of 0.0349 rad (2◦)] was applied to generate
a small rotational error matrix δRi for each RAi as:

δRi = �δvi×� + I

Thus, the RAi used in our simulation is

RAi = δRi RAi .

Similarly, a small rotation error was also added to RBi using
the same method. To simulate the translation error as well, a
zero mean noise with standard deviation 0.002m was added
to both tAi and tBi .

Figure 3 shows the iterative results for the estimation of
the rigid transformation X : Fig. 3a gives the rotational results
given by the ZY X Euler angles, while Fig. 3b provides the
translation vector estimation results. For systematic compar-
ison, we also implemented the SQP algorithm to optimize
the constrained problem in Eq. (5), and the results derived
from the SQP algorithm are also shown in Fig. 3. As we can
see from the figure, both methods can generate the RX and
tX estimations accurately, but the proposed method is much
faster than the traditional optimization method. After 3 itera-
tions usingourmethod, the estimation for X is almost equal to
its ground truth value. Although the optimizationmethod can
also converge to the ground truth of X , convergence speed is
much slower and it needs more than 30 iterations to achieve
the same accuracy.

To better illustrate of estimation error, Fig. 4a presents the
error between the X estimation and its ground truth, while

Fig. 4 shows the value of the cost function
∑J

j=1

∥∥∥Ai X −
XBi

∥∥∥. From thefigures, it is obvious that either the estimation

error or the cost function will decrease to 0 after only 3 iter-
ations using our method. To achieve the same accuracy, the
traditional optimization method needs at least 30 iterations.
Furthermore, the convergence process of our method to find
X is much smoother. After every single iteration, the estima-
tion of X will get closer to the ground truth and the value of
the cost function will get smaller. In contrast, the estimation
of X using the SQPmethod may divert from the ground truth
although the value of the cost function gets smaller after some
certain iterations. It has been noted that the SQP optimization
method took about 2 s to complete all the iterations, while our
method only took less than 0.1 s in our simulation by using
the same computing hardware. In fact, the SQP algorithm
usually requires to calculate the value of cost function more
than 10 times within an iteration, and it also involves sophis-

Fig. 3 The iterative results for the rigid transformation matrix X
estimation. a The rotational part given by the Euler angles, b the trans-
lational vector estimation results. It is very clear that the proposed
two-step iteration method can converge much faster than the traditional
optimization method

ticated Hessian and Jacobian matrix operations, which are
computationally expensive. However, our proposed method
only requires some basic matrix operations, such as multipli-
cation and inverse, which therefore make our method much
more efficient than the traditional optimization method. This
is attractive for direct implementation of the algorithm on
embedded system as part of the robotic hardware.

For this paper, the simulation was repeated for 500 times
using different pairs of A and B (different rotation, trans-
lational, and perturbations), and statistical results for X
estimation are given in Table 1. It is obvious that the pro-
posed two-step iterative method converges after 3 iterations
with negligible errors, while the traditional optimization
based methods needs more than iterations. In conclusion, the
above analysis has shown that the proposed two-step iter-
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Fig. 4 The estimation error for rigid transformation X . a The error
between the X estimation and its ground truth, b the value of the cost
function. It is very clear that the proposed two-step iteration method
can converge much faster than the traditional optimization method

ation method can solve the hand–eye calibration problem
accurately and efficiently.

We also noticed that when we increased rotation angle
error from 0.0175 to 0.175 rad and translation error from
0.001 to 0.01m for any Ai and corresponding Bi , both esti-
mations of X from our method and traditional optimization
start to deviate from the ground truth. The main reason is the
accuracy of X estimation depends on the qualities of A and
B. The larger the errors in A and B are, the more inaccurate
the X estimation is.

DVRK experiments

The proposed two-step iteration method was then applied
to estimating the rigid transformation between the stereo

Table 1 Iterative results over 500 simulations (shown as mean±STD)∥∥X−X̂
∥∥

Our Optimization

Iteration 2 2.2330±9.1455 5.5626±0.6195

Iteration 5 0.0003±0.0004 1.9939±0.6316

Iteration 10 0.0002±0.0001 1.0979±0.5014

Iteration 20 0.0002±0.0001 0.0550±0.0358

Iteration 40 0.0002±0.0001 0.0004±0.0002

Iteration 50 0.0002±0.0001 0.0002±0.0001

laparoscope and the robot manipulator, as shown in Fig. 2.
During the experiment, the robot manipulator was randomly
moved to different positions and orientationswithin the robot
work space, and the pose informationwas then extracted from
the robot forward kinematics. Meanwhile, the pose informa-
tion in the camera coordinatewas also derived from the stereo
images containing the 21 dots pattern. Eight data sets have
been acquired, and in each data set, the robotmanipulatorwas
randomly placed at 5 different orientations and positions to
generate 5 pairs of A and B. Figure 5 shows the hand–eye
calibration results based on the 8 independent data sets. As
we can see from the figure, either the Euler angles or the
translational vector estimation results are similar with very
small deviation throughout all the trials performed, and the
deviations are also very small. The consistency among all
the 8 trials indicates the good repeatability of the proposed
method. Similarly, the traditional optimization method can
also get the comparable results, except it is more computa-
tionally expensive. It is also worth mentioning that although
there is no ground truth for the rigid transformation between
the stereo laparoscope and the robot manipulator, the consis-
tency of the data illustrates the robustness and reproducibility
of our proposed method.

After applying the proposed two-step iterative method to
determine the rigid transformation between the stereo laparo-
scope and the robot manipulator, we then transformed the
poses in the robot coordinate system into the camera system.
In this experiment, wemoved the robot manipulator to differ-
ent positions and rotations. Similar to the last experiment, the
continuous pose information in the robot frame was acquired
from the robot forward kinematics, while the corresponding
pose information in the camera coordinate was derived from
the stereo images. We then converted the poses in the robot
coordinate system into the camera systemusing the estimated
X, and compared the differences. Figure 6 shows the transfor-
mation results: the red solid line indicates the poses extracted
from the stereo images directly, the blue dash-dotted line indi-
cates the poses derived from the robot forward kinematics,
the cyan dashed line represents the convention using the X
estimated by the proposed method, while the black dotted
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Fig. 5 The rigid transformation estimation results using the DVRK: a
the rotation estimation results, b the translation estimation results. Dur-
ing the experiments, the same calibration method was repeated 8 times
using different data sets. Although there is no ground truth for the rigid
transformation, the estimation results have shown good consistency,
which illustrates the robustness of our proposed method

line marks the transformation using the X derived from the
traditional optimization method.

As shown in Fig. 6, either the Euler angles or the trans-
lation vector can have significant differences for the poses
given in the robot coordinate system and the camera system;
therefore, hand–eye calibrationmust be completed to find the
rigid transformation between them in advance. It is also clear
that the proposed two-step iterativemethod can determine the
rigid transformation between the stereo laparoscope and the
robot manipulator and project pose information in the robot
coordinate system into the camera system accurately.We also
noticed that although the convergence speeds of optimization
based methods are much slower than our proposed iterative

Fig. 6 The projection of poses in the camera coordinate system into
the robot system. a The projection results for the rotational part, b the
projection results of the translational part. The projection was com-
pleted using the X estimated from our two-step iteration method and
the traditional optimization method, respectively

method, they can also provide accurate sensor conversion.
To better illustrate the advantage of the proposed two-step
iteration method to solve the hand–eye calibration problem,
the quantitative comparison results of the projection are also
provided, as shown in Table 2. The projection using the X
estimated by the proposed method is slightly better than the
transformation using the X derived from the traditional opti-
mization method. In general, our method has smaller RMS
error and better correlation. In order to visualize the errors of
the hand–eye calibration using the proposed method, Fig. 7
shows he projection of robot homogeneous transformation
matrix to the image space for randomly selected three frames:
147, 374 and 885. The blue crosses indicate the projection,
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Table 2 The RMS, mean, SD and correlation coefficients of the projection of robot homogeneous transformation matrix to the image space

Optimization calibration Our calibration

RMS (Mean, SD) Correlation coefficient RMS (Mean, SD) Correlation coefficient

Roll 0.0226 0.9885 0.0176 0.9914

(Unit rad) (−0.0198±0.0686) (−0.0073±0.0550)

Pitch 0.0323 0.9861 0.0231 0.9902

(Unit rad) (0.0795±0.0641) (0.0463±0.0564)

Yaw 0.0195 0.9948 0.0182 0.9952

(Unit rad) (−0.0196±0.0583) (−0.0131±0.0560)

Translation x 1.2161 0.9550 0.9663 0.9663

(Unit mm) (−2.3400±3.0459) (−1.6659±2.5573)

Translation y 0.7859 0.9804 0.7773 0.9821

(Unit mm) (0.3183±2.4621) (−0.7218±2.3468)

Translation y 0.6594 0.9960 0.5828 0.9956

(Unit mm) (−1.5204±1.4232) (−1.1235±1.4580)

Fig. 7 The projection of robot homogeneous transformation matrix to
the image space for randomly selected three frames: 147, 374 and 885.
The blue crosses indicate the projection, while the red ones represent

the dots detected in the image space directly for homogeneous transfor-
mation matrix derivation in the camera space. It shows that the errors
between the projection and direct detection are very small

while the red ones represent true dot locations. It can be seen
that the re-projection errors are very small. In summary, the
above analyses illustrate the fact that the proposed two-step
iteration method can solve the hand–eye calibration problem
and determine the rigid transformation between the stereo
laparoscope and the robot manipulator accurately and effi-
ciently.

Continuous tracking experiment

One of the main advantages of the proposed two-step itera-
tion method is its high efficiency and fast convergence speed,
which is crucial for online hand–eye calibration. During a
robot-assisted surgery, the stereo laparoscope can be moved
for better field of view and visualization. This will invali-
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Fig. 8 The iterative results for the re-calibration after the laparoscope
was shifted for a couple of millimeters. a The rotational part given by
the Euler angles, b the translational vector estimation results. It is very
clear that the proposed two-step iteration method can converge much
faster than the traditional optimization method

date the hand–eye calibration, and an in-vivo re-calibration
procedure is required without affecting a surgeon’s work-
flow. To simulate this scenario, the laparoscope was moved
for a couple of millimeters to introduce small change in cal-
ibration parameter X after the robot and laparoscope was
registered via the hand–eye calibration in our last experi-
ment. The previous calibration result was used as the initial
value to re-perform the hand–eye calibration. Figure 8 shows
the re-calibration results using two sets of new poses, and the
proposed two-step iterative method only needs two to three
steps to converge, while the traditional optimization method
requires almost 15 steps, particularly for the translational part
to converge.

It should be noted that key dot calibration patternwas used
to extract the new poses in the camera coordinate system,
which may only be applicable to limited number of surgical

Fig. 9 The illustration of feature points on a instrument that can be
applied extract the new pairs of A and B

applications. To apply the proposed method on more gen-
eral surgical tasks, markerless tracking techniques, such as
instrument feature points tracking [39,40] as shown in Fig. 9,
are needed. Although Pachtrachai et al. [41] had successfully
applied robotic surgical instruments with well-known geom-
etry as the calibration object for hand–eye calibration, how
to accurately and robustly extract the new poses based on the
feature point in the presence of occlusion and stained instru-
ment is yet to be solved. We will also evaluate the benefits
of fast online calibration in robot-assisted surgery when we
have positive progress in surgical instruments feature points
tracking.

Conclusion

In conclusion, we have presented a computationally effi-
cient method to solve the hand–eye calibration equation
AX = XB given several pairs of rigid transformations A
and the corresponding B. In our method, dual quaternion
was introduced to represent the rigid transformation, and
a two-step iterative method was then proposed to recover
the real part and dual part of the dual quaternion simulta-
neously, which could thus be applied to estimate rotation
and translation for the rigid transform. The proposed method
was applied to determine the rigid transformation between
the stereo laparoscope and the robot manipulator. Promising
experimental and simulation results were achieved to illus-
trate the effectiveness and efficiency of the proposedmethod.

Our future work will investigate how to accurately and
robustly extract the new poses based on the feature point in
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the presence of occlusion and stained instrument, and apply
the proposed method in vivo.
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