29 research outputs found

    Human spatial representation: what we cannot learn from the studies of rodent navigation

    Get PDF
    Studies of human and rodent navigation often reveal a remarkable cross-species similarity between the cognitive and neural mechanisms of navigation. Such cross-species resemblance often overshadows some critical differences between how humans and nonhuman animals navigate. In this review, I first argued that a navigation system requires both a storage system (i.e., representing spatial information) and a positioning system (i.e., sensing spatial information) to operate. I then argued that the way humans represent spatial information is different from that inferred from the cellular activity observed during rodent navigation. Such difference spans the whole hierarchy of spatial representation, from representing the structure of environment to the representation of sub-regions of an environment, routes and paths, and the distance and direction relative to a goal location. These cross-species inconsistencies suggested that what we learned from rodent navigation does not always transferable to human navigation. Finally, I argue for closing the loop for the dominant, unidirectional animal-to-human approach in navigation research, so that insights from behavioral studies of human navigation may also flow back to shed light on the cellular mechanisms of navigation for both humans and other mammals (i.e., a human-to-animal approach)

    Where Snow is a Landmark: Route Direction Elements in Alpine Contexts

    Get PDF
    Route directions research has mostly focused on urban space so far, highlighting human concepts of street networks based on a range of recurring elements such as route segments, decision points, landmarks and actions. We explored the way route directions reflect the features of space and activity in the context of mountaineering. Alpine route directions are only rarely segmented through decision points related to reorientation; instead, segmentation is based on changing topography. Segments are described with various degrees of detail, depending on difficulty. For landmark description, direction givers refer to properties such as type of surface, dimension, colour of landscape features; terrain properties (such as snow) can also serve as landmarks. Action descriptions reflect the geometrical conceptualization of landscape features and dimensionality of space. Further, they are very rich in the semantics of manner of motion

    SOWL QL: Querying Spatio - Temporal Ontologies in OWL

    Get PDF
    We introduce SOWL QL, a query language for spatio-temporal information in ontologies. Buildingupon SOWL (Spatio-Temporal OWL), an ontology for handling spatio-temporal information in OWL, SOWL QL supports querying over qualitative spatio-temporal information (expressed using natural language expressions such as “before”, “after”, “north of”, “south of”) rather than merely quantitative information (exact dates, times, locations). SOWL QL extends SPARQL with a powerful set of temporal and spatial operators, including temporal Allen topological, spatial directional and topological operations or combinations of the above. SOWL QL maintains simplicity of expression and also, upward and downward compatibility with SPARQL. Query translation in SOWL QL yields SPARQL queries implying that, querying spatio-temporal ontologies using SPARQL is still feasible but suffers from several drawbacks the most important of them being that, queries in SPARQL become particularly complicated and users must be familiar with the underlying spatio-temporal representation (the “N-ary relations” or the “4D-fluents” approach in this work). Finally, querying in SOWL QL is supported by the SOWL reasoner which is not part of the standard SPARQL translation. The run-time performance of SOWL QL has been assessed experimentally in a real data setting. A critical analysis of its performance is also presented

    On the assessment of landmark salience for human navigation

    Full text link
    In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer’s point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framework

    Architecture, Space and Information in Constructions Built by Humans and Social Insects: a Conceptual Review

    Get PDF
    The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms “information”, “space” and “architecture” to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross fertilisation between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects

    The interaction between map complexity and crowd movement on navigation decisions in virtual reality

    No full text
    A carefully designed map can reduce pedestrians’ cognitive load during wayfinding and may be an especially useful navigation aid in crowded public environments. In the present paper, we report three studies that investigated the effects of map complexity and crowd movement on wayfinding time, accuracy and hesitation using both online and laboratory-based networked virtual reality (VR) platforms. In the online study, we found that simple map designs led to shorter decision times and higher accuracy compared to complex map designs. In the networked VR set-up, we found that co-present participants made very few errors. In the final VR study, we replayed the traces of participants’ avatars from the second study so that they indicated a different direction than the maps. In this scenario, we found an interaction between map design and crowd movement in terms of decision time and the distributions of locations at which participants hesitated. Together, these findings can help the designers of maps for public spaces account for the movements of real crowds.ISSN:2054-570
    corecore