
University of Huddersfield Repository

Stravoskoufos, Konstantinos, Petrakis, Euripides G.M., Mainas, Nikolaos, Batsakis, Sotiris and
Samoladas, Vasilis

SOWL QL: Querying Spatio Temporal Ontologies in OWL

Original Citation

Stravoskoufos, Konstantinos, Petrakis, Euripides G.M., Mainas, Nikolaos, Batsakis, Sotiris and
Samoladas, Vasilis (2016) SOWL QL: Querying Spatio Temporal Ontologies in OWL. Journal on
Data Semantics. pp. 121. ISSN 18612040

This version is available at http://eprints.hud.ac.uk/28856/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/42582849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Noname manuscript No.
(will be inserted by the editor)

SOWL QL: Querying Spatio - Temporal Ontologies in
OWL

Konstantinos Stravoskoufos · Euripides G.M. Petrakis · Nikolaos

Mainas · Sotirios Batsakis · Vasilis Samoladas

Received: date / Accepted: date

Abstract We introduce SOWL QL, a query language

for spatio-temporal information in ontologies. Building-

upon SOWL (Spatio-Temporal OWL), an ontology for

handling spatio-temporal information in OWL, SOWL

QL supports querying over qualitative spatio-temporal

information (expressed using natural language expres-

sions such as “before”, “after”, “north of”, “south of”)

rather than merely quantitative information (exact dates,

times, locations). SOWL QL extends SPARQL with a

powerful set of temporal and spatial operators, includ-

ing temporal Allen topological, spatial directional and

topological operations or combinations of the above.

SOWL QL maintains simplicity of expression and also,

upward and downward compatibility with SPARQL.

Query translation in SOWL QL yields SPARQL queries

implying that, querying spatio-temporal ontologies us-

ing SPARQL is still feasible but suffers from several

drawbacks the most important of them being that, queries

in SPARQL become particularly complicated and users

must be familiar with the underlying spatio-temporal

representation (the “N-ary relations” or the “4D-fluents”

approach in this work). Finally, querying in SOWL QL

is supported by the SOWL reasoner which is not part of

the standard SPARQL translation. The run-time per-

formance of SOWL QL has been assessed experimen-

tally in a real data setting. A critical analysis of its

performance is also presented.

Konstantinos Stravoskoufos · Euripides G.M. Petrakis ·
Nikolaos Mainas · Sotirios Batsakis · Vasilis Samoladas
School of Electronic and Computer Engineering,
Technical University of Crete (TUC), Chania, Greece
E-mail: {kgstravo,petrakis,nmainas,batsakis}@intelligence.tuc.gr,
vsam@softnet.tuc.gr Present address: of S. Batsakis is Depart-
ment of Informatics, School of Computing and Engineering,
University of Huddersfield, Queensgate, Huddersfiled, U.K.,
E-mail: S.Batsakis@hud.ac.uk

Keywords Query Language · Spatio-Temporal

Ontology

1 Introduction

The rapid growth of the World Wide Web (WWW)

has generated the need for intelligent tools and mecha-

nisms, which automatically handle tasks that are typi-

cally handled manually by users. For example, buying a

product requires careful selection among different prod-

ucts that satisfy user needs, at the best available price.

In recent years, there is an increasing need for Web ser-

vices that accomplish these tasks automatically with-

out user intervention. These services must be capable

of understanding the meaning of Web pages and reason
over their content in a way similar to humans. Semantic

Web is a solution to this need. In the Semantic Web,

formal definitions of concepts and of their properties

form ontologies, which are defined using the OWL lan-

guage. Ontologies comprise of definitions of concepts

and of their properties by means of binary relations

(i.e., between two concepts, or a concept and a numer-

ical domain). Query languages such as SPARQL, are

typically used for querying information in ontologies.

Handling both static and dynamic information in

the Semantic Web is an important problem to deal with.

Dynamic ontologies are not only suitable for describing

static scenes with static objects (e.g., objects in pho-

tographs) but also enable representation of events with

objects and properties that change in time and space

(e.g., moving objects in a video). However, the syntac-

tic restriction of OWL to binary relations complicates

representation of temporal relations. A property hold-

ing for a time instant or interval is in fact a ternary

relation (involving a temporal instant or interval in ad-

2 Konstantinos Stravoskoufos et al.

dition to the object and the subject) which cannot be

written as a single OWL statement. A standard fix to

this problem is to map a temporal relation to a set of

binary ones with new classes which are introduced by

the temporal model [41].

Representation of dynamic features calls for mech-

anisms that allow for uniform representation of the no-

tions of time (and of properties varying in time) within

a single ontology. Existing methods for achieving this

goal include, among others, temporal description logics

[5], concrete domains [35], property labeling [25], ver-

sioning [32], named graphs [62], reification [41] and the

4D-fluents (perdurantist) approach [66]. Some methods

(e.g., [5], [35]) require extending OWL with additional

constructs and are not compliant with existing stan-

dards of the Semantic Web for crafting, reasoning and

querying ontologies.

First, we discuss SOWL [10, 12] (Spatio-temporal

OWL), an approach for handling spatio-temporal in-

formation in OWL. Complying with existing Seman-

tic Web standards and specifications (e.g., OWL 2.0,

SWRL) is a basic design decision in SOWL. The repre-

sentation of temporal information resorts to 4D-fluents

or, equivalently, to N-ary relations. This representation

is then enhanced with spatial topological or directional

information. The two representations (i.e., 4D-fluents,

N-ary relations) are practically equivalent, with 4D-

fluents being more suitable for the representation of

symmetric, inverse and transitive relations while, the

N-ary approach requires fewer additional objects.

SOWL handles also qualitative relations (expressed

using natural language terms such as “before”, “after”

or “below”, “above”) in addition to quantitative ones.
Reasoning in SOWL is implemented in SWRL and is ca-

pable of inferring new spatial and temporal relations or

detecting inconsistencies. Reasoning implements “path

consistency” on tractable sets of spatial and temporal

relations [9].

The focus of the present work is on querying spatio-

temporal information in OWL ontologies. We pro-

pose SOWL Query Language (SOWL QL), a high-level

query language for spatio-temporal ontologies in OWL.

SOWL QL is independent from the underlying SOWL

representation so that, the user need not be familiar

with the peculiarities of the spatio-temporal model ap-

plied (i.e., 4D-fluents or N-ary relations).

Recent work on query languages for temporal on-

tologies include st-SPARQL [33], SPARQL-ST [44], τ -

SPARQL [62] and TOQL [8]. Similar to SOWL QL,

they all rely on the idea of extending SPARQL with

spatial and temporal operators. Compared to the work

referred to above, SOWL QL has the following advan-

tages: (a) SOWL QL syntax is independent of the un-

derlying model of spatio-temporal representation, (b)

the user need not be familiar with the peculiarities of

the underlying model allowing for handling dynamic

(spatio-temporal) ontologies almost like static ones, (c)

supports an exhaustive set of spatial and temporal op-

erators including (temporal) Allen, distance, topologi-

cal and directional operators, (d) SOWL QL supports

querying of qualitative expressions (defined using nat-

ural language terms such as “before”, “after”,“East”,

“West”) in addition to quantitative spatio-temporal ex-

pressions (a feature which is also supported by SPARQL-

ST) and, (e) supports reasoning during the querying

process (i.e., queries specifying exact temporal or spa-

tial values call for reasoning support).

GeoSPARQL [42] is the current standard of the Open

Geospatial Consortium (OGC) 1 for representing and

querying spatial data on the Semantic Web. Similarly to

the works referred to above, it extends SPARQL with a

complete set of spatial operators and functions for hid-

ing the characteristics of the underlying spatial model

(for facilitating query formulation). This feature is sim-

ilar to SOWL QL which however has this functionality

embedded within its syntax. GeoSPARQL is missing a

temporal model and, consequently, can not answer te-

mporal or spatio - temporal queries as SOWL QL does.

SOWL QL queries are translated to equivalent SPA-

RQL queries. In fact, SOWL QL and SPARQL are

equivalent, meaning that any SOWL QL query can also

be expressed in SPARQL and vice versa (although SPA-

RQL spatio-temporal queries are particularly involved).

SOWL QL is fully implemented and supported by a

Graphical User Interface (GUI). A working version of

SOWL QL is available on the Web2.

Related work in the field of knowledge representa-

tion including approaches for dealing with information

evolving in time and space are discussed in Sec. 2. The

SOWL ontology model and issues related to querying

spatio-temporal information in the Semantic Web are

discussed in Sec. 3 and Sec. 4 respectively. SOWL QL

syntax and semantics as well as its implementation are

presented in Sec. 5 and Sec. 6 respectively, followed by

conclusions and issues for future research in Sec. 8.

2 Background

The rapid growth of the Semantic Web in recent years

has generated additional interest in methods and tools

for dealing with time and with concepts (e.g., events)

evolving in time and space. Related work for the Seman-

tic Web lays its foundations in earlier work for knowl-

1 http://www.opengeospatial.org
2 http://www.intelligence.tuc.gr/prototypes.php

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 3

edge representation such as Description Logics [6] pro-

viding a logical formalism for ontologies.

Time can be regarded as discrete or continuous, lin-

ear or cyclical, absolute or relative, qualitative or quan-

titative. In this work, time is described using quantita-

tive or qualitative terms using temporal instances and

intervals. Choosing between an interval or a point-based

representation is also important [63] with the later be-

ing the one adopted in this work. Point-based repre-

sentations assume a linear ordering of time points with

three possible relations the <, >, = referred to as be-

fore, after and equals respectively. Based on these or-

dering relations, intervals can also be defined as ordered

pairs of points s, e with s < e, often referred to as start

and end of an interval respectively. A temporal re-

lation between intervals can be one of the 13 pairwise

disjoint Allen’s relations [1] of Fig. 1. Building upon

a point or an interval-based representation, qualitative

relations can still be asserted (e.g., when exact values of

temporal instants or intervals are unknown) by means

of their relation (e.g., “before”, “after”) to other tempo-

ral instants or intervals.

ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Fig. 1 Allen’s Temporal Relations

Space is also an important aspect of knowledge rep-

resentation. Space can be regarded as two-dimensional

(2D) or three-dimensional (3D). Formal spatial, and

spatio-temporal representations have been studied ex-

tensively in the Database [27, 55] and recently, in the

Semantic Web literature [15]. Spatial entities (e.g., ob-

jects, regions) in classic database systems are typically

represented using points, lines (polygonal lines) or Min-

imum Bounding Rectangles (MBRs) enclosing objects

or regions and their relationships [7].

Spatial relations can be topological, directional or

distance relations [9,53]. Topological relations represent

the relative position between sets of points or regions on

the plane. This research has been motivated mainly by

the need for a better and formal understanding of spa-

tial relations in the context of Geographic Information

Systems (GIS). Egenhofer [23] suggests a set of nine

topological operators between spatial sets of points or

regions in which relations are defined in terms of in-

tersections of their boundaries. Along the same lines,

Clementini [19] suggests an extension of the above for-

malism for relations between points, lines and regions

by taking also the dimension of their intersections into

account, resulting into a set of five general mutually

disjoint topological relations namely, touch, in, cross,

overlap, disjoint. This formalism is most suitable for

querying in GIS systems (rather than the Web) where

the exact locations of points, lines and regions (polygo-

nal lines) are defined (in meta-data) or can be extracted

from maps.

Following the trend of the Web and Semantic Web,

where objects and their relations are mostly described

qualitatively using natural language expressions (rather

than using their coordinates as in st-SPARQL [33]), the

most widespread formalism for representing topological

relations is the so called Region Connection Calculus

(RCC) formalism [49]. RCC has been adopted by the

Open Geospatial Consortium (OGC) for querying geo-

spatial data on the Semantic Web [28] and has been

implemented in GeoSPARQL [42]. Fig. 2 illustrates the

eight RCC8 topological relations namely (DC, EC, EQ,

NTPP, NTPPi, TTP, TPPi, PO).

X DC Y X EC Y X TTP Y X NTPP Y

X PO Y X EQ Y X TTPi Y

x y x y

x yx y

y
x

y
x

x
y

X NTPPi Y

x
y

Fig. 2 RCC8 topologic relations.

Representations of topological relations may be com-

plemented with information about direction. Directional

relations are defined using cone-shaped areas [38]. Fig. 3

illustrates eight directional relations (nine with the ad-

dition of the Same Location relation) namely, North

(N), North East(NE), East (E), South East (SE), South

(S), South West (SW), West (W) and North West (NW)

forming the so called Cone Shaped Directional repre-

sentation of 9 relations (CSD9). Finally, distance rela-

tions are expressed quantitatively (e.g., 3Km away from

city A) and can be used in conjunction with topological

or directional relations.

Inferring implied relations and detecting inconsis-

tencies is handled by a reasoning mechanism. Relations

holding between spatial or temporal entities (e.g., inter-

4 Konstantinos Stravoskoufos et al.

N NENW

W E

SESSW

Fig. 3 Directional relations.

vals, points) restrict assertions between other temporal

and spatial entities in the knowledge base. Reason-

ing is realized by means of compositions of existing rela-

tions: When a relation (or a set of possible relations) R1

holds between entities A and B and a relation (or a set

of relations) R2 holds between entities B and C then,

the composition of relations R1, R2 (denoted as R1◦R2)

is the set (which may contain only one relation) R3 of

relations holding between A and C. Typically, the set of

possible compositions between pairs of relations is de-

fined in a composition table for qualitative CSD9 [20],

RCC8 [53] or temporal relations [1] respectively.

Reasoning over spatial or temporal relations is known

to be an NP-hard problem. Identifying tractable cases

of this problem has been in the center of many re-

search efforts over the last few years. Tractable sub-

sets for point algebra have been identified in [63,64,65].

Tractable sets of Allen interval algebra have been iden-

tified in [39] and [34]. Tractability of RCC8 topologi-

cal subsets is analyzed in [50] while, cone-shaped direc-

tional relations are examined in [51]. Combining points

and intervals for temporal reasoning is analyzed in [31]

while, combined reasoning over intervals and their dura-

tions is discussed in [47]. Recent results for topological

and temporal reasoning are discussed in [14].

2.1 Concepts Evolving in Time

OWL-Time [30] is an ontology providing definitions of

time instants, intervals and of their relations as well

as, definitions of concepts such as days, weeks, months,

years, dates, time zones, duration and measuring units.

OWL-Time does not show how dynamic objects evolve

in time. This calls for mechanisms such as Temporal

Description logics (TDLs) [5], Concrete domains [35],

Reification, labeling of properties [16,26], Versioning [32],

named graphs [62] and 4D-fluents [66].

Temporal Description Logics (TDLs) [5, 36] extend

standard description logics (DLs) that form the basis

of semantic Web standards with additional constructs

such as “always in the past”, “sometime in the future”.

TDLs offer additional expressive capabilities over non

temporal DLs and retain decidability (with an appro-

priate selection of allowable constructs) but they re-

quire extending OWL syntax and semantics with the

additional temporal constructs. Concrete Domains [35]

require extending OWL with new data types and oper-

ators based on an underlying domain (such as decimal

numbers). TOWL [24] suggests combining 4D-fluents

with concrete domains but does not support qualita-

tive relations or reasoning (as SOWL does) and is not

compatible with existing OWL editing, querying and

reasoning tools (e.g., Protege, Pellet, SPARQL).

Versioning [32] suggests that the ontology has dif-

ferent versions (one per instance of time). When a change

takes place, a new version is created. Changes even on a

single attribute require that a new version of the ontol-

ogy be created. It is not clear how the relation between

evolving classes can be represented. Named Graphs [62]

represent the temporal context of a property by inclu-

sion of a triple representing the property in a named

graph (i.e., a subgraph of the RDF graph specified by a

distinct name). Named graphs are not part of the OWL

specification3 (i.e., there are not OWL constructs trans-

lated into named graphs) and they are not supported

by OWL reasoners.

Reification is a general purpose technique for repre-

senting n-ary relations using a language such as OWL

that permits only binary relations. Specifically, an n-

ary relation is represented as a new object that has all

the arguments of the n-ary relation as objects of proper-

ties. For example if the relation R holds between objects

A and B at time t, this is expressed as R(A,B,t). Fur-

thermore, in OWL, using reification this is expressed as

a new object with R,A,B and t being objects of proper-

ties. Fig. 4 illustrates the relation WorksFor(Employee,

Company, TimeInterval) representing the fact that an

employee works for a company during a time interval.

Using reification, the extra class “ReifiedRelation” is

created having all the attributes of the relation as ob-

jects of properties. Reification suffers mainly from two

disadvantages: (a) a new object is created whenever a

temporal relation has to be represented (this problem

is common to all approaches based on OWL) and (b)

offers limited OWL reasoning capabilities [66] since re-

lation R is represented as the object of a property, thus

OWL semantics over properties (e.g., inverse proper-

ties) are no longer applicable (i.e., the properties of a

relation are no longer associated directly with the rela-

3 http://www.w3.org/TR/owl2-syntax/

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 5

tion itself). Examples of temporal representation based

on reification (the reified temporal relations are named

Events or Actions) are presented in [18, 56]. In [61]

temporal representation is combined with application

specific SWRL rules for representing clinical narratives.

Employee
Company

TimeInterval

ReifiedRelation

Subject

Interval
Object

Predicate
worksFor

Fig. 4 Example of Reification.

N-ary relations [41] suggest representing an N-ary

relation by two properties each related with a new ob-

ject (i.e., the representation introduces one additional

object for every temporal relation). The domains and

ranges of properties have to be adjusted taking into

account the class of intermediate objects representing

the relation (for example the worksfor relation in no

longer a relation having as object an individual of class

Company and subject of class Employee, as they are

now related to object TemporalEmployment). This is

illustrated in Fig. 5.

Company

TimeInterval

Employee

temporalEmployeement

worksFor

hasEmployee
hasEmployee

atTime

worksFor

Fig. 5 Example of N-ary Relations.

In the 4D-fluents (perdurantist) approach [66], con-

cepts in time are represented as four-dimensional ob-

jects with the fourth dimension being the time (times-

lices). Time instances and time intervals are represented

as instances of a TimeInterval class, which in turn is re-

lated with concepts varying in time as shown in Fig. 6.

Changes occur on the properties of the temporal part of

the ontology keeping the entities of the static part un-

changed. The 4D-fluents approach (similarly to N-ary

relations) suffers from data redundancy since it intro-

duces two additional objects for each temporal relation

(instead of one in the case of N-ary relations).

Employee Company

TimeInterval

EmployeeTimeSlice CompanyTimeSlice

worksFor

hasEmployee
tsTimeSliceOf tsTimeSliceOf

tsTimeInterval

tsTimeInterval

Fig. 6 Example of 4D-fluents.

3 SOWL

SOWL [10] is an ontology for handling spatio - tempo-

ral information in OWL. SOWL enables representation

of static as well as of dynamic information based on the

4D-fluents [66] (or, equivalently, on the N-ary [41]) ap-

proach. Both RCC8 topological and CSD9 relations are

integrated in SOWL. Representing both qualitative te-

mporal and spatial information is a distinctive feature

of SOWL. Selecting between the two representations is

a design decision. For SOWL QL, the instant-based (or

point-based) approach for temporal and spatial infor-

mation representation is adopted: intervals or regions

are represented using their end-points.

Reasoning in SOWL is realized by introducing a set

of SWRL4 rules operating on spatial (topological or

directional) relations, and separately, by a set SWRL

rules for asserting inferred temporal relations. Reason-

ers that support DL-safe rules (i.e., rules that apply

only on named individuals in the knowledge base) such

as Pellet [57] can be used for inference and consistency

checking over spatio-temporal relations. Checking for

restrictions holding on time dependent (fluent) proper-

ties requires particular attention: if a fluent property
holds between two objects (classes), then these objects

are indirectly associated through one or more artifi-

cial objects (e.g., TimeSlice object in a 4D-fluents rep-

resentation). For example, for the worksfor property

in Figure 6, the domain of the property is no longer

class Employee but timeslice of Employee. Checking

for property restrictions would require adjusting the do-

main and range of this property from the artificial to

the actual objects. SOWL introduces a rule-based so-

lution to this problem using SWRL [11]. In addition to

reasoning applying on temporal and spatial relations,

Pellet applies also on the ontology schema for inferring

additional facts using OWL semantics (e.g., facts due

to symmetric relationships and class-subclass relation-

ships).

Fig. 7 summarizes all types of spatial relations within

a single ontology schema. Omitting one or more types

of spatial relations is a design decision.

4 http://www.w3.org/Submission/SWRL/

6 Konstantinos Stravoskoufos et al.

Location Location
spatialRelation

topologicalRelation directionalRelation

property class

TPP

TPPi

NTPP

NTPPi

DC EC PO EQ

W

NW
N

NE

E

SW
S

SE

SubPropertyOf Property

Fig. 7 Ontology schema with spatial relations.

Extending the schema with more relation types is

also feasible by instantiating a new class of spatial rela-

tions (e.g., the topological relations by [19]) to the Spa-

tialRelation class of Fig. 7. Each spatialRelation con-

nects two locations and has two sub-properties namely

topologicalRelation and directionalRelation. Any spa-

tial relations formalism can be used to express topo-

logical (e.g., [19]), directional or other (e.g., projection-

based [58]) relations. Fig. 8 illustrates an extension to

the SOWL ontology for incorporating the topological

relations by [19].

Location Location
spatialRelation

topologicalRelation directionalRelation

ClementiniRelation

Area/Area
Relation

Area/Line
Relation

Area/Point
Relation

Line/Line
Relation

Line/Point
Relation

Pont/Point
Relation

Fig. 8 Ontology schema with a new set of topological rela-
tions.

Fig. 9 illustrates a general ontology representation

model for spatial information. Class Location has at-

tribute name (of type string). Also a Location object

can be optionally connected with a Geometry class with

sub-classes: Point, Line, Polyline and Minimum Bound-

ing Rectangle (MBR). This adds additional low-level

(i.e., point, line, polygonal line) representation support

to the SOWL model for extracting spatial relations

from their raw (pixel) representation. An external soft-

ware module (i.e., it is not part of the SOWL model) is

applied for this task [29]. Then, the symbolic names of

spatial relations of Fig. 7 are instantiated to the ontol-

ogy.

Class Point has two (or three in a three-dimensional

representation) numerical attributes, namely X,Y (also

Z in a three-dimensional representation). For example,

Point will be the Geometry of entities such as cities

in a large scale map. Class Line has point1 and point2

as attributes representing the ending points of a line

segment. Class PolyLine represents a line or the sur-

rounding contour of an object (or region) as a set of

consecutive line segments. An object (or region) may

also be represented by its MBR specified by the four

numerical attributes Xmax, Ymax, Xmin and Ymin.

Both representations may co-exist in SOWL (using one

of them or both is a design decision).

Class

Datatype

Xmax

Xmin

Ymax

Ymin

Name

X Y

Location

Geometry

PolyLineLinePoint

MBR

IS-A

Property

Fig. 9 Ontology representation of spatial objects.

Quantitative distance relations (e.g., “3Km away

from city A”) are represented as N-ary relations (as

illustrated in Fig. 10) by introducing object Distance

with attributes the two related locations and a numeri-

cal attribute representing their distance. Each location

object is connected to the Distance object with the lo-

catedAt property. The Distance object is connected to

a TimeInterval object denoting the duration of the dis-

tance relation.

Location

TimeInterval

Location

Distance

hasDistanceatTime
hasDistance

value

Fig. 10 Ontology representation of distance information.

In the case of a moving object, its location is a prop-

erty of a TimeSlice holding for a specific time interval

(Fig. 11). In the case of a static object, its location is

a property of the object itself rather than a property

of a TimeSlice. In the N-ary model, the location of a

moving object is a property of the Event class. In the

case of a static object, its location is a property of the

object. As in 4D-fluents, the object can have temporal

properties represented by Event objects.

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 7

Object

TimeSlice

TimeInterval

Location

Location

Geometry

TimeSliceOf

hasLocation

hasGeometry

spatialRelation

Fig. 11 Ontology representation of moving objects.

Fig. 12 illustrates the dynamic ontology schema rep-

resenting the scenario “C1 company was located in Lon-

don from May 2006 to May 2010, since then it is located

in Berlin, a city east of London”. In this example, it

is not known whether the company is still located in

Berlin. Only the first temporal interval is defined. The

second interval and both locations are unknown and

only their qualitative relations are shown. The exam-

ple illustrates the applicability of the model in the case

of missing or inaccurate information (as it is usually

the case with natural language descriptions). In these

cases, models based on quantitative information only,

are insufficient.

Company_1

name

“C1”

locatedAt

locatedAt

TimeSlice_1

TimeSlice_2

TimeInterval_1

TimeInterval_2

After

Before

starts

ends

2-5-2006

2-5-2010

WestOf

EastOf

name

name

“London”

“Berlin”

Location_1

Location_2

ts
T
im
e
S
li
c
e
O
f

tsTim
eSliceO

f

Fig. 12 SOWL example.

4 Querying Spatio - Temporal Information in

the Semantic Web

Desirable features of temporal query languages include,

upward compatibility (e.g., conventional queries can still

be expressed), point and interval-based views of data,

and simplicity of expression.

SPARQL [46] is the W3C recommendation query

language for RDF. The basic evaluation mechanism

of SPARQL queries is based on graph matching. The

query criteria are given in the form of RDF triples pos-

sibly with variables in the place of the subject, object,

or predicate of a triple, referred to as basic graph pat-

terns.

Querying spatio - temporal information requires us-

ing constructs specific to the underlying temporal model

(e.g., tsTimeSliceOf, tsTimeInterval in the case of 4D-

fluents). This leads to complicated expressions and the

user has to be familiar with the representation model.

This is not required in SOWL QL. The following SPA-

RQL query returns all employees that work for a specific

company at any times.

SELECT ?employee
WHERE {
 {
?timeSlice_0 ex:hasEmployee ex:Company1.
?timeSlice_0 4dfluents:tsTimeInterval ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf ?employee.
?timeSlice_1 4dfluents:tsTimeInterval ?interval_0
 } UNION {
 ex:Company1 ex:hasEmployee ?employee.
 }
}

The same query in SOWL QL can be written with-

out using model specific features as

SELECT ?employee

WHERE {
ex:Company1 ex:hasEmployee ?employee.
}

stSPARQL [33] extends SPARQL with temporal and

spatial operators. The underlying temporal represen-

tation, referred to as stRDF, is based on Temporal

RDF [26]: the RDF statement is extended (by labeling

properties) from a triple to a quad where the fourth

element is the valid time. However, qualitative tempo-

ral information cannot be expressed in stRDF. As a

consequence stRDF and stSPARQL do not have any

reasoning support. Building-upon ideas from constraint

databases, stRDF represents temporal and spatial ob-

jects as quantifier-free formulas in a first-order logic of

linear constraints using stRDF syntax implying that the

user must use stRDF syntax in queries. stSPARQL ex-

tends SPARQL with functions that take temporal and

spatial terms as arguments and can be used in the SE-

LECT, FILTER, and HAVING clause of a SPARQL

query. A spatial term is a spatial literal (i.e., a literal

with data type strdf:geometry), a query variable that

can be bound to a spatial literal, the result of a set op-

eration on spatio-temporal literals (e.g., union), or the

result of a geometric operation on spatial terms (e.g.,

buffer). stSPARQL uses vectors of points to represent

the different geometries. stSPARQL is intended to han-

dle the physical representation of objects (i.e., points or

polygonal lines in applications such as cartography and

geography) rather than their representation in natural

8 Konstantinos Stravoskoufos et al.

language as it is the case on the Web (as SOWL QL

does).

The following stSPARQL query (example 3 in [33])

retrieves observations recorded at time 11 and the rural

area they refer to. Query expressions involve model spe-

cific triples (e.g., hasGeometry) implying that the user

has to be familiar with details of the underlying repre-

sentation model. This is not the case with the equiv-

alent SOWL QL query (below the stSPARQL query).

The query is more concise hiding model specific features

from the query expression.

SELECT ?V ?RA

WHERE {

?OBS rdf:type om:Observation.

?LOC rdf:type om:Location.

?R rdf:type om:ResultData.

?RA rdf:type ex:RuralArea.

?OBS om:observationLocation ?LOC.

?OBS om:result ?R.

?R om:value ?V ?T.

?LOC strdf:hasGeometry ?OBSLOC.

?RA strdf:hasGeometry ?RAGEO.

filter(?T contains (t = 11) &&

?RAGEO contains ?OBSLOC)

}

SELECT ?V ?RA

WHERE {

?OBS rdf:type om:Observation.

?R rdf:type om:ResultData.

?RA rdf:type ex:RuralArea.

?OBS om:result ?R.

?R om:value ?V.

?RA sowl:NTTPi ?OBS AT(11)

}

stSPARQL

SOWL QL

SPARQL-ST [44], similarly to stSPARQL, applies

Temporal RDF and supports querying over spatio - te-

mporal RDF graphs (i.e., temporal RDF graphs that

contain spatial objects) using qualitative and quantita-

tive temporal expressions, in conjunction with spatial

expressions on the point-set spatial relations by Egen-

hofer [23]. RDF reification is applied to associate time

intervals with RDF statements. Similarly to SOWL-QL,

the OWL-Time ontology is integrated into the ontol-

ogy to model concepts of time. The modeling of spatial

properties is based on GeoRSS GML5. Two metric op-

erators are introduced for measuring distance and dura-

tion respectively. Although syntactically, the language

is an extension of SPARQL, aiming at querying RDF

graphs stored in triple stores, the ontology is stored in a

relational database (SPARQL-ST queries are translated

to SQL prior to execution). The prototype implemen-

tation of SPARQL-ST is built on top of a commercial

5 http://www.georss.org/gml

DBMS. This, leads to numerous limitations in express-

ibility (as it is much easier to model complex data in

RDF than in SQL), flexibility (i.e., querying over mul-

tiple different RDF graphs over HTTP), and reasoning

(although SPARQL-ST is not supported by a reasoner)

by not taking advantage of OWL semantics as SOWL-

QL does.

τ -SPARQL [62] extends the syntax of SPARQL with

syntax expressions for addressing temporal information.

Building-upon the so called “temporal RDF” express-

ibility (based on Named Graphs [62]) data model con-

siders time as an additional dimension in data preserv-

ing the semantics of time. The language supports two

major usage formats referred to as “time point queries”

and “temporal queries”. Time point queries aim at re-

trieving information valid at a specified point in time.

Temporal queries allow for wild-card intervals and time

points. These wild-cards can be used to bind a variable

to the validity period of a triple or to express temporal

relationships between intervals. τ -SPARQL allows one

form of temporal wild-cards [?s, ?e] which binds the lit-

eral start and end values.

GeoSPARQL [42] is the solution of the Open Geospa-

tial Consortium (OGC) 6 for representing and querying

geospatial information on the Semantic Web. It defines

a vocabulary for representing geospatial data in RDF

and adds a syntax extension to SPARQL for query-

ing spatial information. Fig. 13 illustrates GeoSPARQL

spatial ontology model. The spatial model consists of

the geo:Feature and geo:Geometry classes, both being

sub-classes of the geo:SpatialObject class.

Feature Geometry

Spatial Object

hasGeometry

WKT Litteral GML Litteral

asWKT asGML

Fig. 13 GeoSPARQL ontology model.

A Feature is an object with a spatial location (e.g.,

a city, a park, a mountain etc.) while Geometry is a rep-

resentation of a spatial location. Geometries and Fea-

tures are linked by the geo:hasGeometry object prop-

erty which denotes that a Feature’s location is repre-

sented by a specific Geometry. The geo:asWKT and

geo:asGML properties link a Geometry object with a

6 http://www.opengeospatial.org/

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 9

WKT or GML literal respectively. WKT and GML lit-

erals are specifically formatted strings for represent-

ing geometries allowing indexing to speed up the query

process. The specification supports all RCC-8, Simple

Features [13] and Egenhofer [23] topological relations.

GeoSparql contains a set of spatial functions for hid-

ing the underlying model from the end-user. A query

rewrite component defines rules for translating these

functions into SPARQL queries. GeoSPARQL is lack-

ing a temporal model and therefore is appropriate only

for static entities (e.g., entities on a map). It is not

supported by a spatial reasoner as SOWL QL does.

SOWL QL supports all features referred to above

and, in addition, provides a wide arsenal of new tempo-

ral and spatial operators. All SOWL QL operators can

address either qualitative or quantitative information

rather than merely quantitative information expressed

using exact values (i.e., dates, times, locations). SOWL

QL is also supported by a reasoner, a feature that is not

provided by τ -SPARQL, stSPARQL, SPARQL-ST or

GeoSPARQL. Unlike τ -SPARQL, stSPARQL or SPARQL-

ST, SOWL QL’s syntax is model independent.

The approach by Bykau, Mylopoulos, Rizzolo and

Velegrakis [17] spans a different research direction. They

proposed a model for capturing and querying concept

evolution. Concept evolution deals with mereological

and causal relationships between concepts rather than

merely with concepts whose properties evolve in time

(as SOWL QL and all works referred to above). They

extend Temporal RDF [26] with additional constructs

to model mereological (part-of) and causal relationships

between concepts (concept merges, splits and other forms

of evolution). Their model enables queries on the his-

tory of concepts that cannot be expressed in other query

languages (e.g., queries for retrieving concepts that are

formed dynamically through merges or splits of other

concepts). The query language extends the nested te-

mporal expressions of nSparql [48] with evolution se-

mantics. The problem of query evaluation is modelled

as one of finding a Steiner forest and they propose an

optimal solution to this problem.

5 SOWL Query Language

SOWL QL introduces a powerful set of spatial and te-

mporal operators which allow users to query spatio-

temporal OWL ontologies without dealing with the pe-

culiarities of the underlying representation model. Be-

ing an extension of SPARQL, SOWL QL uses the same

clauses as SPARQL does and fully supports all SPA-

RQL features. The structure of a SOWL QL query re-

sembles the structure of a SPARQL query with the ad-

dition of spatial and temporal operators. SOWL QL

operators are discussed in Sec. 5.4.

SELECT Variable(s)
WHERE { Triple(s) spatial or temporal operators
AND Condition(s)
}

Similarly to SPARQL, query selection criteria are

expressed by RDF triples of the form Subject - Predi-

cate - Object referred to as basic graph patterns. Basic

graph patterns are used inside the body of the WHERE

clause of a query and this is where SOWL QL opera-

tors are applied forming SOWL-QL statements. SOWL

QL is capable of querying graph patterns along with

their conjunctions and disjunctions. Fig. 14 illustrates

the three possible syntax variations of SOWL-QL state-

ments referred to as S1, S2 and S3 respectively. S1 de-

notes a simple Subject Predicate Object triple (static or

dynamic) with no SOWL-QL operators, S2 denotes a

triple (as S1) followed by a quantitative temporal op-

erator while, S3 denotes combination of triples related

with a qualitative temporal operator.

 Subject Predicate Object

Triple

 Subject Predicate Object Operator

Triple

 Subject Predicate Object Operator

Triple

 Subject Predicate Object

Triple

(S1)

(S2)

(S3)

Fig. 14 Syntax variations of SOWL-QL statements.

5.1 S1 statements

An ontology consists of two parts: the static part (classes,

properties, instances) and the dynamic part consisting

of additional temporal classes representing time, evo-

lution in time along with properties and instances of

the above temporal classes (e.g., TimeSlice class and

tsTimeSliceOf property for the 4D-fluents model or

Event class and atTime property for the N-ary rela-

tions model). First, SOWL QL determines if a prop-

erty (object or data type) in a query is a fluent prop-

erty (i.e., a property that connects Timeslice or Event

objects) or not (i.e., a property that connects “static”

classes or a “static” class with a data type). In the

later case, the query is a static one and is handled as

an ordinary SPARQL query. In the subject - predicate

- object triple, a temporal property is referred to as a

10 Konstantinos Stravoskoufos et al.

“dynamic” predicate. In SOWL QL a triple involving a

dynamic predicate resembles a static one.

Query translation determines if the predicate is dy-

namic or not by checking the ontology for dynamic ob-

jects connected to that predicate. If the predicate is

a fluent one, the predicate connects two dynamic ob-

jects (Timeslice or Event objects depending on tempo-

ral model). If it is static, it connects two static concepts

(e.g., a Company and an Employee). SOWL QL is also

capable of handling fluent properties connected with

static objects in the ontology. In this case, the query

retrieves both the dynamic and static objects satisfy-

ing the query selection criteria.

The following query retrieves both dynamic and static

objects of class “Employee”. The dynamic predicate in

the WHERE clause retrieves “Employees” that work

for “Company1”.

select ?employee
where{
 ex:Company1 ex:hasEmployee ?employee
 }

Spatial triples can also be denoted as subject-pre-

dicate-object triples involving a qualitative spatial op-

erator (as predicate) imposing a constraint on the re-

lation between the subject and the object. The spa-

tial operator connects two static spatial objects (not

connected with dynamic temporal TimeSlice or Event

objects) otherwise, the triple is considered to be spatio-

temporal. The subject and object of the triple are di-

rectly connected with Location objects (otherwise a spa-

tial operator cannot be applied). All topological and

directional relations are implemented as spatial oper-

ators (Sec. 5.4). The spatial query below retrieves all

countries in the north (Nof) of Greece. The operator

addresses static objects (as country locations do not

change over time).

select ?country

where {

 ?country spatial:Nof ex:Greece

 }

The object of the triple can be replaced by POINT(x,y).

Here, instead of comparing the Geometry objects of two

spatial objects we compare the Geometry of the first

spatial object with the Geometry of the Point speci-

fied. The two arguments of POINT(x,y) are float num-

bers corresponding to the x and y axes in the two-

dimensional space. If the point specified does not exist

in the knowledge base, the reasoner is invoked (Sec. 5.5).

An obvious extension would be to allow using line, polyg-

onal line or MBR in the place of POINT (x, y). This

would allow for extending SOWL QL with low-level op-

erators support on lines and regions in the example of

stSPARQL, SPARQL-ST and GeoSPARQL.

The following query retrieves countries north of point

(x, y). If the point is not in the knowledge base, prior

to answering the query the reasoner will be invoked to

infer its relations with countries which are instances of

the ontology.

select ?country
where {

 ?country spatial:Nof POINT(332.2,122.4)
 }

Spatial properties can also be dynamic just like all

other properties. Being dynamic means that, instead of

connecting two Location objects, the spatial property

connects two dynamic objects (TimeSlices or Events)

which are in turn connected with Location objects (Fig.

11). SOWL QL will retrieve all these dynamic objects

and combine the results with the static results.

5.2 S2 statements

Statements of this type are denoted as temporal or

spatio-temporal triples followed by a quantitative te-

mporal operator (operators in SOWL QL are distin-

guished into quantitative and qualitative ones). The

predicate of the triple must be dynamic otherwise, no

results are returned. Quantitative temporal operators

are distinguished into time point operators (if they have

one argument) and, into time interval operators (if they

have two time points as arguments). In such cases, the

spatial dynamic objects (Timeslices or Events or Ge-

ometry objects) are retrieved before the restriction is

applied. The first query below will find cars (e.g., on a

map) parked north of “street1” at a specific time point

while, the second query will find cars north of the point

with coordinates “(12.5,22.5)” at the time specified.

select ?car
where {

 ?car spatial:Nof ex:Street1 AT("2010-02-08T00:00:00")
 }

select ?car
where {
 ?car spatial:Nof POINT(12.5,22.4) AT("2010-02-08T00:00:00")
 }

The following query retrieves companies with em-

ployees whose name is “Smith” before time ‘‘2010--

02--08T00:00:00’’.

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 11

select ?company

where {
 ?company ex:hasEmployee ?employee BEFORE("2010-02-08T00:00:00").
 ?employee ex:employeeName “Smith”
 }

Five quantitative time point operators are defined

in SOWL QL, namely AT, STARTSAT, ENDSAT, AF-

TER, BEFORE and are discussed in Sec. 5.4. They all

specify one time point as argument which is compared

against fluent properties (temporal instants or inter-

vals) in the ontology.

Time interval operators take as arguments two time

points, denoting the starting and the ending points of

a temporal interval. The interval imposes a restriction

over temporal intervals in an ontology where the dy-

namic predicate specified by the triple holds true. SOWL

QL implements the following quantitative operators over

temporal intervals namely ALWAYS AT, SOMETIME -

AT (discussed in Sec. 5.4) as well as all Allen opera-

tors with their default meaning (Fig. 1). The following

query retrieves companies with employees whose name

is “Smith” for temporal intervals overlapping or during

the one specified by the operator.

select ?company

where {
 ?company ex:hasEmployee ?employee
 SOMETIME_AT("2010-02-08T00:00:00","2012-02-08T00:00:00")
 ?employee ex:EmployeeName “Smith”
 }

5.3 S3 statements

Statements of this type involve a qualitative temporal

operator to constraint the relation between two triples.

Each triple represents a relation that holds over a spe-

cific time interval. S3 triples can be either temporal

or spatio-temporal. All Allen operators can be used as

qualitative operators.

The first query below retrieves all employees that

were working for “Company1” before the employee named

“Smith” was hired by “Company2” while, the second

retrieves the employees who have worked for “Com-

pany1” before the company has moved its headquarters

north of “Company2” headquarters (a temporal and a

spatio-temporal statement are combined).

select ?employee

where {
 ex:Company1 ex:hasEmployee ?employee

 BEFORE
 ex:Company2 ex:hasEmployee ?employee2.
 ?employee2 ex:employeeName “Smith”
 }

select ?employee
where {
?employee ex:worksFor ex:Company1
BEFORE
ex:Company1Headquarters spatial:Nof ex:Company2Headquarters
}

Finally, SOWL QL allows also for conjunctions, dis-

junctions or negation of statements in the WHERE

clause. The following query retrieves the employees who

work for “Company1” at time 2010-02-08T00:00:00

or 2011-02-08T00:00:00.

select ?employee

where {

?employee ex:worksFor ex:Company1 AT(2010-02-08T00:00:00)

OR

?employee ex:worksFor ex:Company1 AT(2011-02-08T00:00:00)

}

5.4 SOWL QL operators

Temporal operators in SOWL QL are distinguished into

quantitative and qualitative. The following quantitative

operators specify a single time instant as argument.

AT(timepoint): The fluent holds true during a time

interval which contains timepoint.

STARTSAT(timepoint): The fluent holds true dur-

ing a time interval which starts at timepoint.

ENDSAT(timepoint): The fluent holds true during

a time interval which ends at timepoint.

BEFORE(timepoint): The fluent holds true during

a time interval which ends before timepoint.

AFTER(timepoint): The fluent holds true in a time

interval which starts after timepoint

The following query retrieves all employees that work

for “Company1” during any time interval starting at

the time specified.

select ?employee

where {
 ex:Company1 ex:hasEmployee ?employee
 STARTSAT("2010-02-08T00:00:00")
 }

The Allen relations of Fig. 1 are also defined as

quantitative operators specifying a constraint between

two temporal intervals given as arguments.

MEETS(intervalStarts,intervalEnds): Returnstrue if

the first time interval meets the second one.

METBY(intervalStarts,intervalEnds): Returnstrue if

the second time interval meets the first one.

OVERLAPS(intervalStarts,intervalEnds): Returns true

if the first time interval overlaps with the second one.

12 Konstantinos Stravoskoufos et al.

OVERLAPEDBY(intervalStarts,intervalEnds): Re-

turns true if the second time interval overlaps with the

first one.

DURING(intervalStarts,intervalEnds): Returns true

if the first time interval is during the second one.

CONTAINS(intervalStarts,intervalEnds): Returns true

if the first time interval contains the second one.

STARTS(intervalStarts,intervalEnds): Returns true

if the two time intervals start together.

STARTEDBY(intervalStarts,intervalEnds): Returns

true if the two time intervals start together.

ENDS(intervalStarts,intervalEnds): Returns true if

the two time intervals end together.

ENDEDBY(intervalStarts,intervalEnds): Returns true

if the two time intervals end together.

EQUALS(intervalStarts,intervalEnds): Returns true

if the first time interval equals the second one.

The following query returns the employees that work

for “Company1” for intervals that equal the one speci-

fied as argument.

select ?employee

where {
 ex:Company1 ex:hasEmployee ?employee
 EQUALS("2010-02-08T00:00:00","2012-02-08T00:00:00")
 }

In addition to Allen, the following two operators are

defined:

ALWAYS AT(intervalStarts,intervalEnds): Returns

true for fluents (e.g., events) that occur during the te-

mporal interval specified in the argument (including its

starting and ending points). For events occurring in in-

tervals that do not contain all points of the interval

in question, the operator returns false. It is defined

as a disjunction of the Allen operators CONTAINS,

EQUALS, STARTEDBY, ENDEDBY. If any of these

holds true then ALWAYS AT is also true.

SOMETIME AT(intervalStarts,intervalEnds): Retu-

rns true for events that occur in intervals sharing com-

mon points with the interval specified in the argument.

ALWAYS AT is therefore a special case of SOMETIME -

AT. It is defined as a disjunction of the 9 Allen op-

erators, EQUALS, OVERLAPS, OVERLAPPEDBY,

STARTS, STARTEDBY, ENDS, ENDEDBY, CONTA-

INS, DURING. If any of these is true then SOME-

TIMES AT returns true as well.

In all cases of quantitative operators, time points

can be replaced by variables in order to retrieve time in-

stants or intervals where the predicate (fluent property)

holds true. The following query retrieves the intervals

that employee “Johnson” works for Company “C1”.

select ?x ?y

where {
 ?company ex:hasEmployee ?employee SOMETIME_AT(?x,?y).
 ?company ex:companyName “C1”
 ?employee ex:employeeName “Johnson”
 }

All Allen operators can be also used as qualitative

operators which can be placed between two temporal

or spatio-temporal triple statements. The interval re-

stricting the duration of the predicate of the first triple

is defined by the interval that the predicate of the sec-

ond triple holds true.

The first example below, illustrates the common

case (of a quantitative Allen operator) where the inter-

val restricting the duration of the hasEmployee relation

is restricted by the arguments of the quantitative op-

erator. In the second query, the interval during which

the fluent holds true is compared against the interval

that the fluent of the second triple holds true (i.e., the

interval during which “Company2” has “Employee2”).

select ?employee

where {
 ex:Company1 ex:hasEmployee ?employee
 DURING
 ex:Company2 ex:hasEmployee ex:Employee2
 }

select ?employee

where {
 ex:Company1 ex:hasEmployee ?employee
 DURING("2010-02-08T00:00:00","2012-02-08T00:00:00")
 }

Spatial operators in SOWL QL specify a constraint

on spatial relations between objects. All 9 directional

(i.e., NoF, SoF, WoF, Eof, NWoF, NEof, SEof, SWof,

SameXY) and all 8 topological relations (NTTPi, TTPi,

DC, EC, EQ, TPP, NTTP, PO) are defined as op-

erators with their obvious meaning. All operators are

discussed in detail in [60]. An extension would be to im-

plement operators for the topological relations by [19].

For points, lines and regions (polygonal lines), these

relations are computed by invoking a separate soft-

ware module [29] and are instantiated to the ontology

(Fig. 8).

To support querying on distance information RA-

NGE operator is introduced. The operator has two ar-

guments with the first being a numeric value represent-

ing the distance and the second being a comparison

operator string (i.e., >, <, =, >=, <=) specifying how

the distance argument will be used. The following query

will retrieve all companies located up to 300Km North

of London in 2006.

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 13

select ?company

where {
?company spatial:nof ex:London RANGE(300,”<=”)
SOMETIME_AT("2005-01-01T00:00:00","2006-12-31T00:00:00")
}

5.5 Reasoning in SOWL QL

When the ontology is loaded into the memory, the rea-

soner infers all qualitative relations from the quanti-

tative ones in polynomial time. Temporal and spatial

relations are computed by means of data type compar-

isons and computational geometry algorithms respec-

tively [29]. Moreover, when a quantitative operator is

applied in queries, SOWL QL checks whether the val-

ues specified as arguments exist in the knowledge base.

If not, they are asserted into the knowledge base and

the reasoner is invoked so that, the (qualitative) rela-

tions of the new values with existing ones are derived

and used for answering the query. For example, the

following query retrieves employees that worked for a

company before the time point specified. If time point

‘‘2010-02-08T00:00:00’’ is not in the ontology, prior

to answering the query, the SOWL QL reasoner will as-

sert it (temporarily, and remove it after the query is

executed) in order to compute its relations with exist-

ing fluents.

select ?x ?y

where {
 ?x ex1:hasEmployee ?y BEFORE("2010-02-08T00:00:00")
 }

The same applies for spatial quantitative operators.

The query below, retrieves objects which are north of

POINT(3.4,10.2). The point object is asserted into the

ontology (if not already there) and the SOWL reasoner

will compute all qualitative relations between the new

POINT and all geometric objects in the ontology.

select ?x ?y

where {
 ?x spatial:Nof ?y POINT(3.4 ,10.5)
 }

Reasoning in SOWL [10] is realized by means of

SWRL rules implementing the allowable compositions

over the supported relation (i.e., Allen, RCC-8 or CSD-

9) set combined with OWL 2.0 constructs (e.g., for

declaring disjoint properties) ensuring path consistency

while being sound and complete. Reasoning is embed-

ded within the ontology and relies on a general purpose

reasoner such as Pellet7. The run-time performance of

SOWL declines drastically for large data sets [9].

To deal with the problem of efficiency, reasoning in

SOWL QL resorts to CHOROS [37] and CHRONOS [3]

reasoners for temporal and spatial information respec-

tively. CHOROS is a dedicated spatial reasoner for di-

rectional CSD-9 or RCC-8 relations implemented in

Java. Similarly, CHRONOS is a dedicated temporal rea-

soner for Allen temporal relations. Reasoning is achieved

by applying path consistency [59,64] separately for each

calculus. Path consistency computes all inferred rela-

tions using compositions of existing relations until a

fixed point is reached or until an inconsistency is de-

tected. Compositions of basic RCC-8 and CSD-9 rela-

tions are defined by Cohn et.al. [21] and by Renz and

Mitra [52] respectively. Compositions of basic Allen te-

mporal relations are defined in [2].

The compositions of basic relations may infer dis-

junctions of such relations because disjunctive entries

exist in the composition table (i.e., not all compositions

yield a unique relation as a result). Typically, compo-

sitions of disjunctions requires computing the compo-

sition of disjunctions and storing the result in a struc-

ture which may hold up to 213 × 213 entries for Allen

relations (i.e., up to 213 disjunctions can appear), or

28 × 28 entries for RC8-8 and 29 × 29 entries for CSD-9

relations . CHOROS and CHOROS implement the fol-

lowing optimization: all disjuctions are computed “on

the fly” (i.e., at run-time) by decomposing disjunctive

relations into basic ones involving a simple look-up op-

eration in the 13 × 13 Allen, or 8 × 8 RCC-8 or 9 × 9

composition CSD-9 composition table. This results in

fewer computations and faster reasoning times.

CHOROS and CHRONOS outperform SOWL in the

average and worst cases and scale-up much better than

SOWL (i.e., almost linearly in the average case) with

the size of the input (i.e., the performance gap between

the two reasoner implementations increases with the

size of the data set).

5.6 Translation and Equivalence to SPARQL

Syntactically, SOWL QL expressions form a strict su-

perset of SPARQL expressions meaning that every valid

SPARQL query is also a valid SOWL-QL query. In the

following we show also that every valid SOWL QL query

can be translated into an equivalent SPARQL query

over the supported representations (i.e., 4D-fluents and

N-ary).

SOWL QL uses the same (query) statements with

SPARQL with the addition of SOWL-QL operators.

7 http://clarkparsia.com/pellet/

14 Konstantinos Stravoskoufos et al.

Temporal Triple Translation

Spatial Triple Translation

SpatioTemporal Triple Translation

Temporal Operator Translation

Timepoint Operator Translation

Time Interval Operator Translation

Qualitative Operator Translation

4D-Fluents Model TranslationA.1.1

N-ary Relations Model Translation

4D-Fluents Model Translation

N-ary Relations Model Translation

Timepoint Translation

Time Interval Translation

Allen Translation

A.1.2

A.3.1

A.3.2

B.1.1

B.1.2

B.1.3

A.1

A

A.2

A.3

B.1

Triple Translation

Operator TranslationB

Fig. 15 Translation of SOWL QL to SPARQL.

Three generic query patterns are identified covering the

entire range of SOWL QL syntax (Fig. 14). The trans-

lation of each SOWL QL statement is realized as a

two-stage procedure illustrated in Fig. 15 correspond-

ing to A) the translation of a triple and B) the transla-

tion of an operator. As will be shown in the following,

triple translation is independent from operator transla-

tion and vice-versa.

There are different syntactic variants corresponding

to temporal, spatial and spatio-temporal triples (cases

A1, A2, A3 in Fig. 15). The translation of temporal

and spatio-temporal triples into SPARQL is illustrated

in Fig. 16. It results in a conjunction of SPARQL state-

ments and the translation of each spatial expression de-

pends on characteristics of the underlying model (the

translation for the 4D-fluents model is different from

the translation for the N-ary model). There is only

one translation of each spatial expression (its transla-

tion is independent of temporal model). In the case of

POINT(x,y) spatial operator the point is asserted in the

ontology as the object of the triple and is translated as

above. In the case where two triples are connected with

a SOWL QL operator (case S3) each triple is translated

separately and independently from others.

Fig. 16 encompasses also translation of spatial oper-

ators. A spatial operator corresponds to the predicate

of a spatial or spatio-temporal triple (in cases A.2 and

A.3) which is a SPARQL statement already. Transla-

tion of temporal operator is more involved and depends

on its type (i.e., time point or interval, quantitative or

qualitative).

Case A.1:

Temporal Triple

?subject ex:predicate ?event.

?event ex:predicate ?object.

?event time:atTime ?interval

?timeSliceX sowl:tsTimeSliceOf ?subject

?timeSliceX sowl:tsTimeInterval ?interval.

?timeSliceX ex:predicate ?timeSliceY.

?timeSliceY sowl:tsTimeSliceOf ?object.

?timeSliceY sowl:tsTimeInterval ?interval

Temporal Model: N-ary

Spatial Model: none

Temporal Model: 4D-Fluents

Spatial Model: -

Case A.2:

Spatial Triple

?subject spatial:locatedAt ?locationX

?locationX spatial:hasGeometry ?geometryX.

?object spatial:locatedAt ?locationY.

?locationY spatial:hasGeometry ?geometryY.

?locationX ex:predicate ?locationX

Case A.3:

SpatioTemporal

Triple
?subject spatial:locatedAt ?locationX

?locationX spatial:hasGeometry ?geometryX.

?object spatial:locatedAt ?locationY.

?locationY spatial:hasGeometry ?geometryY.

?locationX ex:predicate ?event.

?event ex:predicate ?locationY.

?event time:atTime ?interval

?subject spatial:locatedAt ?locationX

?locationX spatial:hasGeometry ?geometryX.

?object spatial:locatedAt ?locationY.

?locationY spatial:hasGeometry ?geometryY.

?timeSliceX tsTimeSliceOf ?locationX.

?timeSliceX tsTimeInterval interval.

?timeSliceY sowl:tsTimeSliceOf ?locationY.

?timeSliceY sowl:tsTimeInterval ?interval.

?timeSliceX ex:predicate ?timeSliceY

Triple Translation

Syntax: ?subject ex:predicate ?object
Triple

Temporal Model: N-ary

Spatial Model: SOWL

Temporal Model: 4D-Fluents

Spatial Model: SOWL

Temporal Model: none

Spatial Model: SOWL

Case A.1.1

Case A.1.2

Case A.3.1

Case A.3.2

Fig. 16 Translation of spatio-temporal triples.

Fig. 17 illustrates translation of time point opera-

tors (with a single time point value as argument) of case

B.1.1, time interval operators (with two time point ar-

guments denoting the starting and ending points of an

interval) of case B1.2 and finally, translation of qualita-

tive temporal operators (Allen operators) of case B.1.3.

The translation of specific time interval and Allen op-

erators is illustrated in Fig. 19 and Fig. 20 respectively.

SOWL QL statements are translated to SPARQL

according to the algorithm of Fig. 21. The algorithm

applies to triples in the While clause and proceeds by

translating spatial triples before temporal ones. The

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 15

Operator Operator Translation

Syntax: ?subject ex:predicate ?object

operator(”timepoint”)

Operator B.1.2:

TimeInterval

Operator B.1.1:

Timepoint

Syntax: ?subject ex:predicate ?object

operator(”intervalStart”,”intevalEnd”)

?intervalX time:hasBeginning ?intervalXstart.

?intervalX time:hasEnd ?intervalXend.

?timepoint time:inXSDDateTime "timepoint".

Operator B.1.3:

Qualitative

?intervalX time:hasBeginning ?intervalXstart.

?intervalX time:hasEnd ?intervalXend.

?intervalY time:hasBeginning ?intervalYstart.

?intervalY time:hasEnd ?intervalYend.

?intervalYstart time:inXSDDateTime "intervalStart".

?intervalYend time:inXSDDateTime "intervalEnd".

?intervalX time:hasBeginning ?intervalXstart.

?intervalX time:hasEnd ?intervalXend.

?intervalY time:hasBeginning ?intervalYstart.

?intervalY time:hasEnd ?intervalYend.

Syntax: ?subjecX ex:predicateX ?objectX

operator ?subjectY ex:predicateY ?objectY

Timepoint Operator Translation (Fig. 18)

Time Interval Operator Translation (Fig. 19)

Allen Operator Translation (Fig. 20)

Allen Operator Translation (Fig. 20)

or

Fig. 17 Translation of SOWL QL temporal operators to
SPARQL.

Operator Translation

{ ?intervalXstart time:before ?timepoint.

 ?intervalXend time:after ?timepoint. }

UNION

{ ?intervalXstart time:equals ?timepoint.}

UNION

{?intervalXend time:equals ?timepoint.}

AT

?intervalXstart time:after ?timepoint..AFTER

?intervalXend time:before ?timepoint.BEFORE

?intervalXstart time:equals ?timepoint.STARTSAT

?intervalXend time:equals ?timepoint.ENDSAT

Fig. 18 Translation of timepoint operators.

output is a SPARQL expression for each spatial or te-

mporal SOWL QL triple.

During translation, special variables are generated

in order to map queries to the underlying temporal

and spatial model concepts (e.g., timeslices). A unique

identifier UID is used after the name of each special

variable in order to prevent confusion with user de-

fined variables (e.g., location1, interval30, etc.). More

specifically, the following types of special variables are

generated during translation:

A disjunction of the translations of the Allen operators:
CONTAINS, EQUALS, STARTEDBY, ENDEDBY.

ALWAYS_AT

A disjunction of the translations of the Allen operators:
EQUALS, OVERLAPS, OVERLAPPEDBY, STARTS,
STARTEDBY, ENDS, ENDEDBY, CONTAINS, DURING.

SOMETIME_AT

Operator Translation

Fig. 19 Translation of time interval operators.

BEFORE ?intervalXend time:before ?intervalYstart

AFTER ?intervalXstart time:after ?intervalYend.

MEETS ?intervalXend time:equals ?intervalYstart.

METBY ?intervalXstart time:equals ?intervalYend.

OVERLAPS ?intervalXstart time:before ?intervalYstart.

OVERLAPPEDBY

DURING ?intervalXstart time:after ?intervalYstart.

?intervalXend time:after ?intervalYstart.

?intervalXend time:before ?intervalYend.

?intervalXstart time:after ?intervalYstart.

?intervalXstart time:before ?intervalYend.

?intervalXend time:after ?intervalYend.

?intervalXend time:before ?intervalYend.

?intervalXstart time:before ?intervalYstart.
?intervalXend time:after ?intervalYend.

CONTAINS

STARTS ?intervalXstart time:equals ?intervalYstart.
?intervalXend time:before ?intervalYend.

?intervalXstart time:equals ?intervalYstart.
?intervalXend time:after ?intervalYend.

STARTEDBY

ENDS ?intervalXstart time:before ?intervalYstart.
?intervalXend time:equals ?intervalYend.

?intervalXstart time:after ?intervalYstart.

?intervalXend time:equals ?intervalYend.
ENDEDBY

EQUALS ?intervalXstart time:equals ?intervalYstart.
?intervalXend time:equals ?intervalYend.

Operator Translation

Fig. 20 Translation of Allen operators.

– An event special variable with name eventUID for

each dynamic temporal triple of the N-ary temporal

model.

– Two timeslice variables with names timesliceUID

corresponding to the timeslices of the subject and

the object of the 4D-fluents temporal model.

– A timepoint variable with name timepointUID for

each time point in temporal triplets.

– An interval variable with name intervalUID for each

interval used in a temporal triple.

– Two interval variables with names intervalUIDStart

and intervalUIDEnd corresponding to the starting

and ending points of a time interval.

– A location variable with name locationUID and a

geometry variable with name geometryUID corre-

16 Konstantinos Stravoskoufos et al.

Translate Spatial Triples:

for each triple in the while clause:

 Read triple

 if (triple is spatial)

 Apply Case A.2 (Fig.16)

 if (triple is spatio-temporal)

 if (model is N-ary)

 Apply Case A.3.1 (Fig.16)

 else

 if(model is 4D-Fluents)

 Apply Case A.3.2 (Fig.16)

Translate Temporal Triples:

for each triple in the while clause:

 Read triple

 if (triple is temporal)

 if (model is 4D-Fluents)

 Apply Case A.1.1 (Fig.16)

 else

 if (model is N-ary)

 Apply Case A.1.2 (Fig.16)

 if (temporal operator exists after triple)

 if(timepoint operator)

 Apply Case B.1.1 (Fig.17)

 else

 if (time interval operator)

 Apply Case B.1.2 (Fig.17)

 else

 if (qualitative operator)

 Read next triple

 Apply Case B.1.3 (Fig.17)

Fig. 21 Translation Algorithm.

sponding to concepts of the underlying spatial SOWL

model.

Fig. 22 and Fig. 23 illustrate two SOWL QL queries

and their translation to SPARQL queries. The first, is

a temporal query that retrieves employees working for

a company before a specific time point. The second,

is a spatio temporal query that retrieves planes flying

South of Italy during a specific time interval. Notice the

simplicity of SOWL QL expressions as opposed to the

complexity of the equivalent SPARQL queries. SPA-

RQL query expressions involve model specific triples

(e.g., tsTimeSliceOf, inXSDDDateTime, hasGeometry,

locatedAT) implying that the user has to familiar with

peculiarities of they underlying temporal or spatial mode.

It is almost impossible for ordinary users (even for ex-

perts) to formulate such queries.

SELECT ?company ?employee

WHERE {

?company ex:hasEmployee ?event0.

?event0 ex:hasEmployee ?employee.

?event0 time:atTime ?interval0.

?interval0 time:hasBeginning ?interval0start.

?interval0 time:hasEnd ?interval0end.

?timepoint0 time:inXSDDateTime

"2007-02-05T00:00:00"^^xsd:dateTime.

?interval0end time:before ?timepoint0.

}

Case A.1.1

(Fig.16)

Case B.1.1

(Fig.17)

Query

SELECT ?company ?employee

WHERE

{

 ?company ex:hasEmployee ?employee B

 BEFORE("2007-02-05T00:00:00")

}

SELECT ?company ?employee

WHERE

{

?timeSlice0 sowl:tsTimeSliceOf ?company.

?timeSlice0 sowl:tsTimeInterval ?interval0.

?timeSlice0 ex:hasEmployee ?timeSlice1.

?timeSlice1 sowl:tsTimeSliceOf ?employee.

?timeSlice1 sowl:tsTimeInterval ?interval0.

?interval0 time:hasBeginning ?interval0start.

?interval0 time:hasEnd ?interval0end.

?timepoint0 time:inXSDDateTime

"2007-02-05T00:00:00"^^xsd:dateTime.

?interval0end time:before ?timepoint0.

}

Translation (N-ary)

Translation (4D-Fluents)

Operator

(Fig.18)

Case A.1.2

(Fig.16)

Case B.1.1

(Fig.17)

Operator

(Fig.18)

Fig. 22 Translation of a temporal SOWL QL query to SPA-
RQL.

6 SOWL QL system

SQWL QL queries are issued using a Graphical User

Interface (GUI). Fig. 24 illustrates the architecture of

SOWL QL translator. It consists of several modules the

most important of them being the (a) ontology loader,

(b) query parser and (c) the interpreter.

Initially, the user chooses an OWL ontology to load

into the memory. The ontology loader determines if

a dynamic (temporal or spatial) model is implemented

within the ontology. This task is accomplished by pars-

ing the concepts of the ontology and by identifying one

by one the URIs (Universal Resource Identifiers are

unique strings that describes resources) of the specific

classes and properties that are required by each model

representation. For example, in order to identify the

4D-fluents model, the TimeSlice and Interval classes

and also the tsTimeSlice and tsTimeInterval proper-

ties must be identified.

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 17

Query

SELECT ?plane

WHERE

{

 ?plane spatial:Sof ex:Italy

 DURING("2015-02-05T00:00:00","2015-02-06T00:00:00").

}

Translation (N-ary)

Translation (4D-Fluents)

SELECT ?plane

WHERE {

?plane spatial:locatedAt ?_location0.

?_location0 spatial:hasGeometry ?_geometry0.

ex:Italy spatial:locatedAt ?_location1.

?_location1 spatial:hasGeometry ?_geometry1.

?_location0 spatial:SoF ?_location1

?_timeSlice0 sowl:tsTimeSliceOf ?_location0.

?_timeSlice0 sowl:tsTimeInterval ?_interval0.

?_timeSlice0 spatial:SoF ?_timeSlice1.

?_timeSlice1 sowl:tsTimeSliceOf ?_location1.

?_timeSlice1 sowl:tsTimeInterval ?_interval0.

?_interval0 time:hasBeginning ?_interval0start.

?_interval0 time:hasEnd ?_interval0end.

?_interval1 time:hasBeginning ?_interval1start.

?_interval1 time:hasEnd ?_interval1end.

?_interval1start time:inXSDDateTime

"2015-02-05T00:00:00"^^xsd:dateTime.

?_interval1end time:inXSDDateTime

"2015-02-06T00:00:00"^^xsd:dateTime.

?_interval0start time:after ?_interval1start.

?_interval0end time:before ?_interval1end.

}

SELECT ?plane

WHERE {

?plane spatial:locatedAt ?_location0.

?_location0 spatial:hasGeometry ?_geometry0.

ex:Italy spatial:locatedAt ?_location1.

?_location1 spatial:hasGeometry ?_geometry1.

?_location0 spatial:SoF ?_location1

?_location0 ex:SoF ?_event0.

?_event0 ex:SoF ?_location1.

?_event0 time:atTime ?_interval0.

?_interval0 time:hasBeginning ?_interval0start.

?_interval0 time:hasEnd ?_interval0end.

?_interval1 time:hasBeginning ?_interval1start.

?_interval1 time:hasEnd ?_interval1end.

?_interval1start time:inXSDDateTime

"2015-02-05T00:00:00"^^xsd:dateTime.

?_interval1end time:inXSDDateTime

"2015-02-06T00:00:00"^^xsd:dateTime.

?_interval0start time:after ?_interval1start.

?_interval0end time:before ?_interval1end.

}

Case B.1.2

(Fig.17)

Operator

(Fig.20)

Case A.3.1

(Fig.16)

Operator

(Fig.20)

Case A.3.2

(Fig.16)

Case B.1.2

(Fig.17)

Fig. 23 Translation example of a spatio temporal SOWL QL
query to SPARQL.

If a dynamic model is identified, the ontology loader

enables the appropriate parser (temporal, spatial or

both) and activates the corresponding temporal or spa-

tial interpreter. For example, if the N-ary relations model

is recognized then, the ontology loader will enable the

info/data

SPARQL Query

Output :

SPARQL Query

Output :

Error Message

SOWL Query

SPARQL QUERY EXECUTION

ONTOLOGY LOADER

MODEL RECOGNITION

TEMPORAL

PARSER

SPATIAL

PARSER

QUERY PARSER

SOWL INTERPRETER

4D-FLUENTS

INTERPRETER

N-ARY

RELATIONS

INTERPRETER

TEMPORAL INTERPRETER SPATIAL INTERPRETER

SOWL SPATIAL

INTERPRETER

ONTOLOGY

(Owl file)

 Output :

ResultSet

Input :

SOWL

Query

Fig. 24 SOWL QL System Architecture.

temporal parser and the N-ary relations interpreter.

The enabled parser searches for existing SOWL QL op-

erators or dynamic predicates in the query. If no SOWL

QL operators or dynamic predicates are found then, no

translation takes place and the query is executed as an

ordinary SPARQL query. If spatio-temporal operators

or dynamic predicates are found then, the parser uses

the appropriate interpreter to translate the query to

SPARQL. When the translation process is completed,

the resulted SPARQL query is executed and the results

are displayed. Fig. 25 illustrates a snapshot of SOWL

QL Graphical User Interface.

Fig. 25 SOWL QL Graphical User Interface

The parser module is enabled only when a dynamic

model is detected by the ontology loader. It consists of

a temporal and a spatial parser which can be enabled

(or disabled) separately according to spatial model rec-

ognized (e.g., if no spatial model is recognized then the

spatial parser is never enabled). Each parser is capa-

ble of identifying a set of spatio-temporal operators in

18 Konstantinos Stravoskoufos et al.

the query and enable the appropriate interpreters ac-

cording to the model that has been recognized in order

to translate it to SPARQL. If both the temporal and

spatial parsers are enabled, the spatial parser always

precedes the temporal parser.

As discussed in Sec. 5, a SOWL QL operator can be

used only after a triple pattern or between two triple

patterns inside the WHERE clause. Moreover, the pred-

icate of each triple can be a fluent one holding over

a specific interval (e.g., ex:Company ex:hasEmployee-

ex:Employee) or it can be a spatial operator (e.g ?x

spatial:Nof ?y). The implementation of the parser is

based on these simple acknowledgments. The parser

scans the triples in the WHERE clause sequentially and

uses a look-ahead operator to read the next token after

a triple.

The interpreter module translates SOWL QL ex-

pressions into equivalent SPARQL queries. The inter-

preter module is also responsible for invoking the rea-

soner for triples specifying values which do not exist

in the knowledge base. The interpreter is invoked by

the parser whenever a triple with a fluent predicate or

a SOWL QL operator is recognized. The main inter-

preter class encompasses two classes implementing the

temporal and the spatial interpreters respectively. The

temporal and spatial interpreters are also specialized to

more specific interpreters according to the ontology dy-

namic model in use (i.e., 4D-fluents or N-ary relations

in this work). For example, if the ontology loader mod-

ule detects the 4D-fluents model then the correspond-

ing temporal interpreter is enabled. Fig. 26 illustrates

a schematic overview of the implementation of the in-

terpreter. Finally, different query patterns call for the

appropriate instantiations of the interpreter [60].

Output :

SPARQL Query

Input :

SOWL Query

SOWL INTERPRETER

4D-FLUENTS

INTERPRETER

N-ARY RELATIONS

INTERPRETER

TEMPORAL INTERPRETER

MORE

INTERPRETERS

SPATIAL INTERPRETER

SOWL SPATIAL

INTERPRETER

MORE

INTERPRETERS

Fig. 26 SOWL QL Interpreter.

7 Evaluation

The run-time efficiency of SOWL QL is assessed exper-

imentally in a real data setting. The SOWL ontology

is instantiated with data from AIS Brest dataset 8 us-

ing the 4D-fluents temporal model. The dataset con-

tains 1,048,576 position records of ship vessels in Brest

area, France, during the year 2009. Each record pro-

vides (among others) information such as ship code,

speed, position (longitude, latitude) and time. Accord-

ingly, the instantiated ontology represents ship posi-

tions at various instances in time. We worked with the

first 1,000 data set records referring to positions of 20

ships at various time instances. The CHRONOS [3] and

CHOROS [37] reasoners are applied for inferring all im-

plied spatio-temporal relations (including spatial rela-

tions between any two ships) and checking the ontology

for consistency. All inferred relations are instantiated

in the ontology resulting in an ontology with 2,113,835

triples.

Fig. 27 illustrates the representation of a moving

ship. Property movesTo is a dynamic property as its

values change in time (its domain and range is of class

TimeSlice). Fig. 28 shows the representation of spatial

relations between two ships. These spatial relations are

handled as dynamic properties.

Fig. 27 Representation of a moving ship.

The purpose of the following experiments is to demon-

strate the dependence of query performance on both,

query complexity and the size of the data set. To this

end, we measured the performance of the basic query

statements of Section 5. Fig. 29 lists theSOWL QL

queries tested on AIS Brest dataset.

8 http://chorochronos.datastories.org/?q=node/9

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 19

Fig. 28 Representation of dynamic spatial relation.

For every SOWL QL query expression, query re-

sponse times are reported (each measurement is the av-

erage over 10 queries). For queries specifying a spatial

location or time point or temporal interval, this quan-

tity is taken from the ontology. This way we avoid in-

voking the reasoners during query execution; otherwise

reasoning times would be included to the response times

of these queries. Therefore, all times reported below ac-

count solely for query parsing, translation to SPARQL

and query execution. The queries were run on a Dell

PowerEdge R300 computer, 2.5Ghz with 16GB RAM.

Fig. 30 illustrates the response time as the size of

the ontology varies. For all queries, the response time

scales linearly with the size of the ontology. As ex-

pected, queries specifying a temporal triple alone or te-

mporal triple with a time-point operator perform much

better. However, queries with spatio-temporal triples

exhibited high response times. In general, the response

time of queries with more complicated query statements

declined significantly for larger data sets.

As can be seen in Fig. 16, the more involved a

query statement is, the longer the size of the result-

ing SPARQL expression. As SPARQL expressions are

evaluated in time proportional to the size of the query

pattern [43], our experimental measurements are con-

sistent with expectations.

Consequently, the inefficiency of SOWL QL query

response time is a direct consequence of the size of

the ontology, which, if materialized, grows quadrati-

cally to the size of the input datasets (as the reason-

ers are invoked after loading the ontology in memory)

Query statement SOWL QL query

Temporal triple
Retrieve movements

of vessel “220247000".

select ?vessel ?location

where {

?vessel ex1:movesTo ?location.

?vessel ex1:vesselName “220247000"

}

Temporal triple

Time point operator
Retrieve vessel

movements after time point

“2009-02-11T14:37:11".

select ?vessel ?location

where {

?vessel ex1:movesTo ?location

AFTER (”2009-02-11T14:37:11")

}

Temporal triple

Time interval operator
Retrieve vessel movements

in temporal intervals

overlappingor during

the one speci!ed.

select ?vessel ?location

where {

?vessel ex1:movesTo ?location

SOMETIME AT(”2009-02-11T14:37:36",

“2009-02-11T14:37:45")

}

Temporal triple

Qualitative operator
Retrieve vessel movements

that occur before movements

of Vessel “220247000”

select ?vessel ?location

where {

?vessel ex1:movesTo ?location

AFTER

?vessel2 ex1:movesTo ?location2.

?vessel2 ex1:vesselName "220247000"

}

Spatio-Temporal triple
Retrieve vessels located

North of vessel “220247000”

select ?vessel

where {

?vessel1 spatial:Nof ?vessel2.

?vessel2 ex1:vesselName “220247000"

}

Spatio-Temporal triple

Temporal Operator
Retrieve vessels located

South-East of vessel”220247000”

after the time speci!ed.

select ?vessel

where {

?vessel spatial:SEof ?vessel2

AFTER (”2009-02-11T14:37:11").

?vessel2 ex1:vesselName “220247000"

}

Fig. 29 Representative SOWL QL queries tested on AIS
Brest dataset.

and requires proportionally high times to search. Moti-

vated by this problem, previous works have limited their

scope to situations where spatio-temporal knowledge

is completely quantitative, whereas SOWL was specif-

ically designed to handle qualitative and quantitative

knowledge. By limiting to purely quantitative knowl-

edge, it is possible to avoid materializing the complete

set of triples, and instead store the dataset in a spatio-

temporal database, computing spatio-temporal triples

on-the-fly. However, spatio-temporal database engines

for handling both quantitative and qualitative knowl-

edge are not currently available [40].

7.1 Improving the Performance

Having identified the root cause of inefficiency in the

current implementation of the SOWL QL query en-

gine, we now focus on a discussion of avenues for fu-

ture research into ameliorating this problem. There are

20 Konstantinos Stravoskoufos et al.

Fig. 30 Average response time of SOWL QL queries on AIS Brest data set.

three main strategies for efficient query evaluation: (a) a

query rewriting engine, based on some model of the ex-

ecution cost, (b) efficient storage structures, including

secondary index structures, for organizing the data, and

(c) a suite of alternative search algorithms that utilize

indexes in order to implement the query language prim-

itives efficiently. Although Jena ARQ 9 has no built-in

indexing support for temporal or spatial data types,

its extension points allow for custom index mechanisms

(via the so-called “magic properties”) and search algo-

rithms (termed filter functions). Furthermore, it allows

customized query rewriting (by user-defined transform-

ers). We treat each issue in turn.

In the current implementation of SOWL QL, the

spatial parser is always invoked before the temporal

one. A more sophisticated query optimizer would ex-

ploit selectivity statistics to estimate the size of inter-

mediate results, so to reorder the evaluation of patterns

appropriately. Intuitively, the most selective patterns of

a query are those that involve literal values; in our case,

times, time intervals and spatial geometries. However,

because of the transitive nature of spatio-temporal re-

lations, the number of ground triples per value is very

high. Therefore, in order to meaningfully perform query

rewriting on the spatio-temporal patterns of a query,

such triples should not be instantiated explicitly.

An interesting challenge is to develop suitable in-

dexing mechanisms for efficiently storing and search-

ing over qualitative as well as quantitative knowledge.

9 https://jena.apache.org/documentation/query/

To this end, there are ad-hoc techniques that could be

implemented using the current state-of-the-art in data

structures, or more principled approaches, into the de-

sign of novel data structures.

One ad-hoc but possibly practical solution could be

to split spatio-temporal relations into two parts: one

containing those triples that relate quantitative enti-

ties, and the rest. The first part, containing the bulk of

the triples would not be instantiated; instead, a spatio-

temporal index structure could serve to represent the

triples implicitly and also perform efficient matching.

The second part would be explicitly instantiated, but its

size would hopefully be small. To this end, an efficient

query engine could utilize provably efficient data struc-

tures such as the Interval Tree [45] in main memory, or

the External Memory Interval Tree [4] when the data

is stored on disk, to handle temporal data, or indeed,

any of a large number of data structures developed for

spatio-temporal databases [54].

Another alternative is to invent new data structures

that can store the output of a reasoner in a compressed,

quickly searchable form. The crucial observation here

is that spatio-temporal relations exhibit high redun-

dancy due to transitivity. Therefore, one could inves-

tigate data structures for partial orders. This problem

has received some attention in recent years (e.g., [22]).

Recent results indicate that the search cost of such tech-

niques is proportional to the so-called width w of the

partial order (the cardinality of the maximum set of

mutually incomparable elements). Another important

concept is the so-called Dushnik-Miller dimension of a

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 21

partial order: the smallest number of total orders whose

intersection gives rise to the partial order (e.g., see [67]).

If this dimension is small, one can use standard multidi-

mensional index structures to store qualitative informa-

tion efficiently. When the spatio-temporal information

is complete, this dimension is small for spatio-temporal

knowledge, but may be larger in the presence of incom-

plete information.

In addition to data structures, new matching algo-

rithms are needed, that would be able to exploit these

data structures, to perform part of the spatio-temporal

reasoning on-the-fly; for example, a memory-efficient

version of path consistency, which would utilize existing

indexes.

8 Conclusions and Future Work

We introduce SOWL QL, a query language for spatio-

temporal ontologies. SOWL QL builds-upon SOWL [9],

a representation model for temporal and spatial knowl-

edge in OWL. Addressing qualitative and quantitative

information in queries is a unique feature of SOWL

QL. SOWL QL is also supported by reasoning for cer-

tain query types (i.e., queries specifying exact temporal

or spatial values such as points or intervals). In addi-

tion, SOWL QL syntax is independent of representation

model (i.e., the 4D-fluents or the N-ary model in this

work), so users need not be familiar with the peculiar-

ities of the underlying representation model applied.

These are distinctive features of SOWL QL not sup-

ported by query languages such as stSPARQL, SPARQL-

ST or τ -SPARQL.

SOWL QL supports a wide arsenal of temporal and

spatial operators (all temporal Allen relations and all

spatial topological and directional relations operators

are implemented as operators) not supported by other

query languages such as those referred to above. stSPARQL,

GeoSPARQL in particular, are tailored to the needs of

specific application fields (e.g., geography, cartography)

where addressing information in their physical (e.g.,

polygonal) form is more important than addressing nat-

ural language (i.e., textual) descriptions implying that

it is not particularly meant to be used for the Web. In

this direction, we showed how SOWL QL can be en-

hanced with new low-level operators for lines and poly-

gons in the example of GeoSPARQL, stSPARQL and

SPATQL-ST or topological operators (such as those by

Clementini [19]).

Query optimization is an important direction for fu-

ture work: optimizing SOWL QL might require that

Jena ARQ is extended (or replaced by a new query

mechanism possibly skipping translation to SPARQL)

for optimal execution of spatial and temporal expres-

sions. An almost orthogonal issue is speed of search:

query response times can be speeded-up significantly

by incorporating into the query search process index-

ing mechanisms for both qualitative and quantitative

spatial and temporal information. Although indexing

for exclusively quantitative information is feasible using

standard techniques, support of qualitative knowledge

in SOWL model does not render it directly amenable

to indexing techniques.

References

1. Allen, J.: Maintaining Knowledge about Temporal In-
tervals. Communications of the ACM 26(11), 832–843
(1983)

2. Allen, J.F.: Maintaining Knowledge About Temporal In-
tervals. Commun. ACM 26(11), 832–843 (1983). DOI
http://doi.acm.org/10.1145/182.358434

3. Anagnostopoulos, E., Petrakis, E.G.M., Batsakis, S.:
CHRONOS: Improving the Performance of Qualitative
Temporal Reasoning in OWL. In: ICTAI, pp. 309–315.
IEEE Computer Society (2014)

4. Arge, L., Vitter, J.S.: Optimal dynamic interval manage-
ment in external memory. In: 37th Annual Symposium
on Foundations of Computer Science, pp. 560–569 (1996)

5. Artale, A., Franconi, E.: A Survey of Temporal Exten-
sions of Description Logics. Annals of Mathematics and
Artificial Intelligence 30(1), 171–210 (2000)

6. Baader, F.: Description Logics. In: Reasoning Web: Se-
mantic Technologies for Information Systems, 5th Inter-
national Summer School 2009, Lecture Notes in Computer

Science, vol. 5689, pp. 1–39. Springer–Verlag (2009)
7. Balbiani, P., Condotta, J.F., del Cerro, L.F.: A New

Tractable Subclass of the Rectangle Algebra. In: IJCAI,
pp. 442–447 (1999)

8. Baratis, E., Maris, N., Petrakis, E., Batsakis, S., Pa-
padakis, N.: The TOQL System. 11th International
Symposium on Spatial and Temporal Databases (SSTD
2009), Demo pp. 450–454 (2009)

9. Batsakis, S.: SOWL: A Framework for Handling Spatio
- Temporal Information in OWL. Ph.D. thesis, Dept. of
Electronic and Comp. Engineering, Technical Univercity
Of Crete (2011)

10. Batsakis, S., Petrakis, E.: SOWL: A Framework for Han-
dling Spatio - Temporal Information in OWL 2.0. In: 5th
International Symposium on Rules: Research Based and
Industry Focused (RuleML’ 2011), pp. 242–249 (2011)

11. Batsakis, S., Petrakis, E.: Imposing Restrictions over Te-
mporal Properties in OWL: A Rule-Based Approach.
In: A. Bikakis, A. Giurca (eds.) Rules on the Web: Re-
search and Applications, Lecture Notes in Computer Sci-
ence, vol. 7438, pp. 240–247. Springer Berlin Heidel-
berg (2012). DOI 10.1007/978-3-642-32689-9 19. URL
http://dx.doi.org/10.1007/978-3-642-32689-9_19

12. Batsakis, S., Stravoskoufos, K., Petrakis, E.: Temporal
Reasoning for Supporting Temporal Queries in OWL 2.0.
15th International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems (KES’
2011) 6881, 558–567 (2011)

13. Beddoe, D., Cotton, P., Uleman, R., Johnson, S., Herring,
J.R.: OpenGIS Simple Features Specification For SQL.
Tech. rep., OGC (1999)

http://dx.doi.org/10.1007/978-3-642-32689-9_19

22 Konstantinos Stravoskoufos et al.

14. Bodirsky, M., Chen, H.: Qualitative Temporal and Spa-
tial Reasoning Revisited. Journal of Logic and Compu-
tation 19, 1359–1383 (2009)

15. Budak Arpinar, I., Sheth, A., Ramakrishnan, C.,
Lynn Usery, E., Azami, M., Kwan, M.: Geospatial Ontol-
ogy Development and Semantic Analytics. Transactions
in GIS 10(4), 551–575 (2006)

16. Buneman, P., Kostylev, E.: Annotation Algebras for
RDFS. In: 2nd International Workshop on the Role of
Semantic Web in Provenance Management (SWPM-10)
(2010)

17. Bykau, S., Mylopoulos, J., Rizzolo, F., Velegrakis,
Y.: On Modeling and Querying Concept Evolution.
Journal Data Semantics 1(1), 31–55 (2012). URL
http://dblp.uni-trier.de/db/journals/jodsn/jodsn1.

html#BykauMRV12

18. Champin, P., Passant, A.: SIOC in Action Representing
the Dynamics of Online Communities. In: Proceedings of
the 6th International Conference on Semantic Systems,
pp. 1–7. ACM (2010)

19. Clementini, E., Felice, P.D., van Oosterom, P.: A Small
Set of Formal Topological Relationships Suitable for End-
User Interaction. In: D.J. Abel, B.C. Ooi (eds.) SSD,
Lecture Notes in Computer Science, vol. 692, pp. 277–295.
Springer (1993)

20. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualita-
tive Spatial Representation and Reasoning with the Re-
gion Connection Calculus. GeoInformatica 1(3), 275–316
(1997)

21. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qual-
itative Spatial Representation and Reasoning with the
Region Connection Calculus. GeoInformatica 1(3), 275–
316 (1997)

22. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S.,
Verbin, E.: Sorting and Selection in Posets. SIAM
J. Comput. 40(3), 597–622 (2011). DOI 10.1137/
070697720. URL http://dx.doi.org/10.1137/070697720

23. Egenhofer, M.J., Franzosa, R.D.: Point-Set Topological
Spatial Relations. International Journal of Geographical
Information Systems 5(2), 161–174 (1991)

24. Frasincar, F., Milea, V., Kaymak, U.: tOWL: Integrating
Time in OWL. Semantic Web Information Management:
A Model-Based Perspective pp. 225–246 (2010)

25. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF.
In: Second European Semantic Web Conference (ESWC
2005), pp. 93–107 (2005)

26. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introduc-
ing Time into RDF. IEEE Transactions on Knowledge
and Data Engineering 19(2), 207–218 (2007). DOI
10.1109/tkde.2007.34. URL http://dx.doi.org/10.1109/

tkde.2007.34

27. Guting, R.: An Introduction to Spatial Database Sys-
tems. The VLDB Journal 3(4), 357–399 (1994)

28. Hart, G., Dolbear, C.: Linked data: A Geo-Spatial Per-
spective, chap. 6. CRC Press (2013)

29. Hatzigeorgakidis, G.: Management of Spatio - tempo-
ral Information in Semantic Web Applications. Diploma
Thesis, Department of Electronic and Computer Engi-
neering, Technical University of Crete (2011)

30. Hobbs, J., Pan, F.: Time Ontology in OWL. W3C Work-
ing Draft, September 2006 (2006). URL http://www.w3.

org/TR/owl-time/

31. Jonsson, P., Krokhin, A.: Complexity Classification in
Qualitative Temporal Constraint Reasoning. Artificial
Intelligence 160(1-2), 35–51 (2004)

32. Klein, M., Fensel, D.: Ontology Versioning on the Seman-
tic Web. In: Proceedings of the International Semantic

Web Working Symposium (SWWS), pp. 75–91. Citeseer
(2001)

33. Koubarakis, M., Kyzirakos, K.: Modeling and Querying
Metadata in the Semantic Sensor Web: the Model stRDF
and the Query Language stSPARQL. Proceedings of the
7th Extended Semantic Web Conference (ESWC2010)
pp. 425–439 (2010)

34. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning About
Temporal Relations: The Tractable Subalgebras of
Allen’s Interval Algebra. Journal of the ACM (JACM)
50(5), 591–640 (2003)

35. Lutz, C.: Description logics with concrete domains-a sur-
vey. In Advances in Modal Logics, volume 4. King’s Col-
lege Publications (2003)

36. Lutz, C., Wolter, F., Zakharyashev, M.: Temporal De-
scription Logics: A Survey. In: 15th International Sym-
posium on Temporal Representation and Reasoning,
TIME’08, pp. 3–14. IEEE (2008)

37. Mainas, N., Petrakis, E.G.M.: CHOROS 2: Improving the
Performance of Qualitative Spatial Reasoning in OWL.
In: ICTAI, pp. 283–290. IEEE Computer Society (2014)

38. Montello, D., Frank, A.: Modeling Directional Knowledge
and Reasoning in Environmental Space: Testing Qualita-
tive Metrics. The Construction of Cognitive Maps Geo-
Journal Library 32(3), 321–344 (1996)

39. Nebel, B., Burckert, H.: Reasoning About Temporal Re-
lations: A Maximal Tractable Subclass of Allen’s Inter-
val Algebra. Journal of the ACM (JACM) 42(1), 43–66
(1995)

40. Nikolaou, C., Koubarakis, M.: Querying incomplete
geospatial information in RDF. In: Advances in Spa-
tial and Temporal Databases - 13th International Sym-
posium, SSTD 2013, Munich, Germany, August 21-23,
2013. Proceedings, pp. 447–450 (2013). DOI 10.1007/
978-3-642-40235-7 26. URL http://dx.doi.org/10.1007/

978-3-642-40235-7_26
41. Noy, N., Rector, A.: Defining N-ary Relations on the

Semantic Web (2006). URL http://www.w3.org/TR/

swbp-n-aryRelations/
42. Open Geospatial Consortium: GeoSPARQL - A geo-

graphic query language for RDF data, A proposal for
an OGC Draft Candidate Standard (2010)

43. Perez, J., Arenas, M., Gutierrez, C.: The Semantics and
Complexity of SPARQL. In: 5th International Semantic
Web Conference, ISWC 2006 (2006). URL http://www.

dcc.uchile.cl/~cgutierr/papers/sparql.pdf
44. Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extend-

ing SPARQL to support spatiotemporal queries. In:
N. Ashish, A.P. Sheth (eds.) Geospatial Semantics and
the Semantic Web, no. 12 in Semantic Web and Beyond,
chap. 3, pp. 61–86. Springer, New York (2011)

45. Preparata, F.P., Shamos, M.I.: Computational Geome-
try: An Introduction. Springer-Verlag (1985)

46. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Lan-
guage for RDF. W3C working draft 4 (2006). URL
http://www.w3.org/TR/rdf-sparql-query/

47. Pujari, A., Sattar, A.: A New Framework for Reasoning
About Points, Intervals and Durations. In: International
Joint Conference On Artificial Intelligence, vol. 16, pp.
1259–1267. Lawrence Erlbaum Associates Ltd (1999)

48. Prez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navi-
gational language for RDF. Journal of Web Semantics
8(4), 255–270 (2010). URL http://dblp.uni-trier.de/

db/journals/ws/ws8.html#PerezAG10
49. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on

Regions and Connection. Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third In-
ternational Conference, (KR 92) 92, 165–176 (1992)

http://dblp.uni-trier.de/db/journals/jodsn/jodsn1.html#BykauMRV12
http://dblp.uni-trier.de/db/journals/jodsn/jodsn1.html#BykauMRV12
http://dx.doi.org/10.1137/070697720
http://dx.doi.org/10.1109/tkde.2007.34
http://dx.doi.org/10.1109/tkde.2007.34
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://dx.doi.org/10.1007/978-3-642-40235-7_26
http://dx.doi.org/10.1007/978-3-642-40235-7_26
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.dcc.uchile.cl/~cgutierr/papers/sparql.pdf
http://www.dcc.uchile.cl/~cgutierr/papers/sparql.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://dblp.uni-trier.de/db/journals/ws/ws8.html#PerezAG10
http://dblp.uni-trier.de/db/journals/ws/ws8.html#PerezAG10

SOWL QL: Querying Spatio - Temporal Ontologies in OWL 23

50. Renz, J.: Maximal Tractable Fragments of the Region
Connection Calculus: A Complete Analysis. In: Interna-
tional Joint Conference On Artificial Intelligence, vol. 16,
pp. 448–455 (1999)

51. Renz, J., Mitra, D.: Qualitative Direction Calculi with
Arbitrary Granularity. In: Trends in Artificial Intelli-
gence: 8th Pacific Rim International Conference on Arti-
ficial Intelligence, Proceedings (PRICAI 2004), pp. 65–74
(2004)

52. Renz, J., Mitra, D.: Qualitative Direction Calculi with
Arbitrary Granularity. In: C. Zhang, H.W. Guesgen,
W.K. Yeap (eds.) PRICAI, Lecture Notes in Computer Sci-
ence, vol. 3157, pp. 65–74. Springer (2004)

53. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using
Constraint Calculi. Handbook of Spatial Logics pp. 161–
215 (2007)

54. Rigaux, P., Scholl, M., Voisard, A.: Spatial databases -
with applications to GIS. Elsevier (2002)

55. Sellis, T.: Research Issues in Spatio - temporal Database
Systems. Advances in Spatial Databases (Book Chapter)
1651, 5–11 (1999)

56. Shaw, R., Troncy, R., Hardman, L.: Lode: Linking Open
Descriptions of Events. The Semantic Web pp. 153–167
(2009)

57. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.:
Pellet: A Practical OWL-DL Reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web
5(2), 51–53 (2007)

58. Skiadopoulos, S., Koubarakis, M.: On the Consistency
of Cardinal Direction Constraints. Artificial Intelligence
163(1), 91–135 (2005)

59. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8
and RDF/OWL Reasoning and Query Engine. In: 6th

Intern. Workshop on OWL: Experiences and Directions
(OWLED 2009), pp. 2–31. Springer-Verlag New York,
Inc. (2009)

60. Stravoskoufos, K.: SOWL QL: Querying Spatio - Tempo-
ral Ontologies in OWL 2.0 (2013). MSc Thesis

61. Tao, C., Wei, W., Solbrig, H., Savova, G., Chute, C.:
CNTRO: A Semantic Web Ontology for Temporal Rela-
tion Inferencing in Clinical Narratives. In: AMIA Annual
Symposium Proceedings, vol. 2010, pp. 787–91. American
Medical Informatics Association (2010)

62. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Ef-
ficient Temporal Querying of RDF Data with SPARQL.
In: Proceedings of the 6th European Semantic Web Con-
ference on The Semantic Web: Research and Applica-
tions, pp. 308–322. Springer-Verlag (2009)

63. Van Beek, P.: Approximation Algorithms for Temporal
Reasoning. Proceedings of the 11th International Joint
Conference on Artificial Intelligence- Volume 2 pp. 1291–
1296 (1989)

64. van Beek, P., Cohen, R.: Exact and Approximate Rea-
soning about Temporal Relations. Computational Intel-
ligence 6, 132–144 (1990)

65. Vilain, M., Kautz, H.: Constraint Propagation Algo-
rithms for Temporal Reasoning. In: Proceedings of the
Fifth National Conference on Artificial Intelligence, pp.
377–382 (1986)

66. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in
OWL. In: Formal Ontology in Information Systems: Pro-
ceedings of the Fourth International Conference (FOIS
2006), pp. 226–336 (2006)

67. Yannakakis, M.: The Complexity of the Partial Order
Dimension Problem. SIAM J. on Algebraic and Discrete

Methods 3(3), 351–358 (1982)

	Introduction
	Background
	SOWL
	Querying Spatio - Temporal Information in the Semantic Web
	SOWL Query Language
	SOWL QL system
	Evaluation
	Conclusions and Future Work

