1,317 research outputs found
Noise auto-correlation spectroscopy with coherent Raman scattering
Ultrafast lasers have become one of the most powerful tools in coherent
nonlinear optical spectroscopy. Short pulses enable direct observation of fast
molecular dynamics, whereas broad spectral bandwidth offers ways of controlling
nonlinear optical processes by means of quantum interferences. Special care is
usually taken to preserve the coherence of laser pulses as it determines the
accuracy of a spectroscopic measurement. Here we present a new approach to
coherent Raman spectroscopy based on deliberately introduced noise, which
increases the spectral resolution, robustness and efficiency. We probe laser
induced molecular vibrations using a broadband laser pulse with intentionally
randomized amplitude and phase. The vibrational resonances result in and are
identified through the appearance of intensity correlations in the noisy
spectrum of coherently scattered photons. Spectral resolution is neither
limited by the pulse bandwidth, nor sensitive to the quality of the temporal
and spectral profile of the pulses. This is particularly attractive for the
applications in microscopy, biological imaging and remote sensing, where
dispersion and scattering properties of the medium often undermine the
applicability of ultrafast lasers. The proposed method combines the efficiency
and resolution of a coherent process with the robustness of incoherent light.
As we demonstrate here, it can be implemented by simply destroying the
coherence of a laser pulse, and without any elaborate temporal scanning or
spectral shaping commonly required by the frequency-resolved spectroscopic
methods with ultrashort pulses.Comment: To appear in Nature Physic
TSG-6 protects cartilage and bone by modulating the activities of chondrocytes and osteoclasts: a potential therapeutic for musculoskeletal disorders
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
High resolution spatial modelling of greenhouse gas emissions from land use change to energy crops in the UK
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors (e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation
A novel fluorescent imaging technique for assessment of cerebral vasospasm after experimental subarachnoid hemorrhage
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas
Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI).
Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model.
Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen.
Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas
Advanced imaging of a histologically confirmed bone infarction of the distal tibia in a Warmblood mare
An 8‐year‐old Warmblood‐cross mare presented for investigation of acute onset left hindlimb lameness. Nuclear scintigraphy identified a marked, focal, increase in radiopharmaceutical uptake in the distal aspect of the left tibia. Radiography revealed a large, oval, multi‐loculated radiolucent area within the medulla of the distal metaphysis of the left tibia. The mare was treated conservatively for 6 months but showed little improvement in the lameness so the owner elected for euthanasia. Post‐mortem computed tomographic imaging revealed a large, oval, hypoattenuating area within the distal tibia, surrounded by a thick, irregular, sclerotic border. The lesion occupied the majority of the medullary cavity but the cortical bone was unaffected. Gross and histopathological examination confirmed a diagnosis of a bone infarction in the medullary cavity of the distal tibia
Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins
A formalized general theory of syntax with bindings
We present the formalization of a theory of syntax with bindings that has been developed and refined over the last decade to support several large formalization efforts. Terms are defined for an arbitrary number of constructors of varying numbers of inputs, quotiented to alpha-equivalence and sorted according to a binding signature. The theory includes a rich collection of properties of the standard operators on terms, such as substitution and freshness. It also includes induction and recursion principles and support for semantic interpretation, all tailored for smooth interaction with the bindings and the standard operators
- …
