101 research outputs found

    Somatic PIK3R1 Variation as a Cause of Vascular Malformations and Overgrowth

    Get PDF
    PurposeSomatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1.MethodsAffected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity.ResultsThe phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone.ConclusionSomatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway

    A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity.

    Get PDF
    Background AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants.Methods We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity.Results Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations.Conclusions These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options

    RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro

    Get PDF
    Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity

    Safety and efficacy of low-dose sirolimus in the PIK3CA-Related Overgrowth Spectrum

    Get PDF
    Purpose PIK3CA-related overgrowth spectrum (PROS) encompasses a range of debilitating conditions defined by asymmetric overgrowth caused by mosaic activating PIK3CA variants. PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), a critical transducer of growth factor signaling. As mTOR mediates the growth-promoting actions of PI3K, we hypothesized that the mTOR inhibitor sirolimus would slow pathological overgrowth. Methods Thirty-nine participants with PROS and progressive overgrowth were enrolled into open-label studies across three centers, and results were pooled. For the primary outcome, tissue volumes at affected and unaffected sites were measured by dual energy X-ray absorptiometry during 26 weeks of untreated run-in and 26 weeks of sirolimus therapy. Results Thirty participants completed the study. Sirolimus led to a change in mean percentage total tissue volume of –7.2% (SD 16.0, p = 0.04) at affected sites, but not at unaffected sites (+1.7%, SD 11.5, p = 0.48) (n = 23 evaluable). Twenty-eight of 39 (72%) participants had ≥1 adverse event related to sirolimus of which 37% were grade 3 or 4 in severity and 7/39 (18%) participants were withdrawn consequently. Conclusion This study suggests that low-dose sirolimus can modestly reduce overgrowth, but cautions that the side-effect profile is significant, mandating individualized risk–benefit evaluations for sirolimus treatment in PROS

    Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy.

    Get PDF
    BACKGROUND: Sporadic vascular malformations (VMs) are complex congenital anomalies of blood vessels that lead to stroke, life-threatening bleeds, disfigurement, overgrowth, and/or pain. Therapeutic options are severely limited, and multidisciplinary management remains challenging, particularly for high-flow arteriovenous malformations (AVM). METHODS: To investigate the pathogenesis of sporadic intracranial and extracranial VMs in 160 children in which known genetic causes had been excluded, we sequenced DNA from affected tissue and optimized analysis for detection of low mutant allele frequency. RESULTS: We discovered multiple mosaic-activating variants in 4 genes of the RAS/MAPK pathway, KRAS, NRAS, BRAF, and MAP2K1, a pathway commonly activated in cancer and responsible for the germline RAS-opathies. These variants were more frequent in high-flow than low-flow VMs. In vitro characterization and 2 transgenic zebrafish AVM models that recapitulated the human phenotype validated the pathogenesis of the mutant alleles. Importantly, treatment of AVM-BRAF mutant zebrafish with the BRAF inhibitor vemurafinib restored blood flow in AVM. CONCLUSION: Our findings uncover a major cause of sporadic VMs of different clinical types and thereby offer the potential of personalized medical treatment by repurposing existing licensed cancer therapies. FUNDING: This work was funded or supported by grants from the AVM Butterfly Charity, the Wellcome Trust (UK), the Medical Research Council (UK), the UK National Institute for Health Research, the L'Oreal-Melanoma Research Alliance, the European Research Council, and the National Human Genome Research Institute (US)

    Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study

    Get PDF
    The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers

    An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    Get PDF
    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication

    De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

    Get PDF
    Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes

    De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes

    Get PDF
    Recent studies have demonstrated genetic differences between monozygotic (MZ) twins. To test the hypothesis that early post-twinning mutational events associate with phenotypic discordance, we investigated a cohort of 13 twin pairs (n = 26) discordant for various clinical phenotypes using whole-exome sequencing and screened for copy number variation (CNV). We identified a de novo variant in PLCB1, a gene involved in the hydrolysis of lipid phosphorus in milk from dairy cows, associated with lactase non-persistence, and a variant in the mitochondrial complex I gene MT-ND5 associated with amyotrophic lateral sclerosis (ALS). We also found somatic variants in multiple genes (TMEM225B, KBTBD3, TUBGCP4, TFIP11) in another MZ twin pair discordant for ALS. Based on the assumption that discordance between twins could be explained by a common variant with variable penetrance or expressivity, we screened the twin samples for known pathogenic variants that are shared and identified a rare deletion overlapping ARHGAP11B, in the twin pair manifesting with either schizotypal personality disorder or schizophrenia. Parent-offspring trio analysis was implemented for two twin pairs to assess potential association of variants of parental origin with susceptibility to disease. We identified a de novo variant in RASD2 shared by 8-year-old male twins with a suspected diagnosis of autism spectrum disorder (ASD) manifesting as different traits. A de novo CNV duplication was also identified in these twins overlapping CD38, a gene previously implicated in ASD. In twins discordant for Tourette's syndrome, a paternally inherited stop loss variant was detected in AADAC, a known candidate gene for the disorder
    • …
    corecore