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ABSTRACT  

Purpose: Somatic activating variants in the PI3K-AKT pathway cause vascular malformations 

with and without overgrowth. We previously reported an individual with capillary and lymphatic 

malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K 

complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular 

anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1. 

Methods: Affected tissue from individuals with vascular lesions and overgrowth recruited from a 

multi-site collaborative network was studied. Next-generation sequencing targeting coding 

regions of cell-signaling and cancer-associated genes was performed followed by assessment 

of variant pathogenicity. 

Results: The phenotypic and variant spectrum associated with somatic variation in PIK3R1 is 

reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three 

PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related 

overgrowth spectrum (PROS). These overlapping features included mixed vascular 

malformations, sandal-toe gap deformity with macrodactyly, lymphatic malformations, venous 

ectasias, and overgrowth of soft tissue or bone. 

Conclusion: Somatic PIK3R1 variants sharing attributes with cancer-associated variants cause 

complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum 

overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum 

attributable to genetic variation in the PI3K-AKT pathway.
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INTRODUCTION 

Vascular malformations and the overgrowth syndromes of which they are commonly a part 

constitute a heterogeneous group of congenital malformations that lead to significant morbidity 

and disfigurement. Next-generation sequencing (NGS) has become an important tool in genomic 

investigation of these syndromes, allowing improved molecular characterization and diagnosis. 

Developments in NGS technology have enabled successful discovery of disease-associated 

somatic variation within affected tissue.1,2 It is now recognized that vascular malformations and 

overgrowth demonstrate some shared genetic variation with cancer, with the phosphoinositide 3-

kinase (PI3K)-AKT growth signaling pathway commonly dysregulated in both sets of disease.3-5 

Class I phosphatidylinositol 3-kinases (PI3K) function as heterodimers composed of a 

catalytic and a regulatory subunit and serve as intracellular signal transducers that convert 

phosphoinositide (4,5)-bisphosphate into phosphoinositide (3,4,5)-trisphosphate (PIP3). PIP3 

generation triggers activation of downstream effectors including PDK1 and then AKT, which 

promote cell growth and survival.6 Somatic mosaic activating variants in PIK3CA, encoding the 

p110a catalytic subunit of the PI3K heterodimer, have been well-described in vascular 

malformations and overgrowth syndromes.7 Among the regulatory subunits of PI3K, PIK3R1 

encodes three distinct protein products (p85a, p55a and p50a ), generated through alternative 

splicing. These products form obligate heterodimers with PIK3CA, stabilizing and inhibiting it 

in the basal state, while mediating its binding to activated receptor tyrosine kinases and its 

subsequent activation.8 PIK3R1 also negatively regulates the PI3K pathway by stabilizing the 

phosphatase PTEN, itself a tumor suppressor.9 

PIK3R1 variants that fail to inhibit p110a activity, usually by disruption of the inter-SH2 

domain, cause constitutive PI3K pathway activation, and are enriched in cancers, albeit 

much less commonly than PIK3CA variants. Given the numerous variants identified in PI3K 

pathway components (PIK3CA, AKT1, and PTEN) in overgrowth, PIK3R1 is an excellent 
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candidate gene for vascular malformations and overgrowth. We used targeted, high-depth NGS 

to analyze affected tissue from a cohort of individuals with vascular malformations, and thereby 

extend understanding of the role played by PIK3R1 in these clinically important disorders. 

MATERIALS AND METHODS 

Study cohort 

The study was authorized by the institutional review board of participating institutions. 

Individuals described herein were identified to harbor a variant in PIK3R1 amid the setting of 

apparently mosaic disease and were derived from one of three cohorts which together enabled 

the  assemblage of variant and phenotype data within this described study cohort.  The primary 

cohort is a multi-site network coordinated through the Pediatric Dermatology Research Alliance 

(PeDRA)3 enrolling patients of any age with vascular anomalies and overgrowth. Specimens were 

available on 108 patients consisting of 3-4 mm skin punch biopsy samples from affected tissue 

or a paraffin-embedded sample of affected tissue from previous excisions.  Within the PeDRA 

cohort, ten PIK3R1-variant positive individuals were identified.  Among a National Institutes for 

Health (NIH) cohort of 297 individuals ascertained for heterogeneous manifestations of vascular 

anomalies and overgrowth, two PIK3R1-variant positive individuals were identified.  The NIH 

cohort eligibility criteria were apparently mosaic (segmental) overgrowth of extra-central nervous 

system (CNS) organs/tissue. Individuals may or may not have had CNS manifestations, but those 

with CNS manifestations alone were not included, nor were those with vascular anomalies alone 

without other manifestations of overgrowth. Samples collected for sequencing included either 

punch skin biopsies of apparently affected tissues or excisional biopsies collected at the time of 

surgery. Of necessity, these samples were highly heterogeneous in nature and number, based 

on the clinical needs and limitations of the individuals. The Genomics and Pathology Services 

(GPS) at Washington University School of Medicine cohort consisted of five PIK3R1-variant 

positive individuals ascertained from a total of 343 individuals assayed clinically for suspected 

disorders of somatic mosaicism, including but not limited to, overgrowth and vascular 
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malformation. Where available, clinical data were retrospectively collected and included medical 

history, dermatologic and musculoskeletal exams, and clinical and radiologic images. Available 

clinical and radiologic images were reviewed centrally. The NIH study was reviewed and approved 

by the NHGRI IRB, protocol number 94-HG-0132. 

Sequencing Methodologies 

Next-generation sequencing (NGS) was utilized in all centers to identify genetic variation 

(supplemental methods). DNA was extracted from affected fresh frozen tissue (FT), cultured 

tissue (CT) or from formalin-fixed paraffin-embedded (FFPE) blocks of previously excised affected 

tissue.  

RESULTS 

Identification of pathogenic variants in PIK3R1 

PIK3R1 variants were detected in tissue of 17 individuals within the study cohort, and were 

observed at a reduced variant allele frequency/fraction (VAF) consistent with a somatic etiology, 

with most detected at less than 10% (Table I). The identified variants included missense and 

insertion-deletion (indel) variants within the SH2 (n=1) and PI3K_P85_iSH2 (n=16) domains of 

PIK3R1 and overlapped regions harboring known hotspots seen in cancers (Figure 1).10-12 

Notably, the variants detected in vascular malformation and overgrowth occur in domains that are 

common to all PIK3R1 products (p85a, p55a and p50a). Recurrent variation was detected among 

this cohort resulting in nine unique variants at the level of the coding sequence, and seven unique 

variants at the level of the predicted protein consequence. Indel events comprised three in-frame 

deletions and four splice-site alterations. 

Variant Attributes 

Variants were interpreted using a modification of the American College of Medical Genetics 

and Genomics and the Association for Molecular Pathology (ACMG/AMP) standards and 

guidelines for variant interpretation as described in the supplemental methods.13 Variants were 

considered to be of somatic origin if the variant allele was observed at a diminished VAF or a 
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variant was present at differing frequencies among tissues from the same individual. Variant 

attributes considered when assessing for pathogenicity included variant location within the gene 

or protein product (hotspot or domain), occurrence and frequency within this cohort, and within 

the wider setting of human disease, as well as variant type and predicted impact on the protein 

product. Among the detected variants, 15 were classified as pathogenic (five of these being 

unique at the level of the predicted amino acid change), with two classified as likely pathogenic. 

Clinical phenotype in individuals with PIK3R1 pathogenic variants 

Expert-reviewed clinical images and data were available for 12 individuals harboring 

PIK3R1 variants, and their phenotypes were similar to those attributed to somatic mosaic hotspot 

variants in PIK3CA. Most patients had red vascular stains (10/12), venous ectasias or 

engorgement (11/12), and mild soft tissue or bone overgrowth (11/12). Four individuals had 

sandal-toe gap deformities of the foot with mild macrodactyly of the second toe. (Table II, Figure 

2). Other clinical features noted included developmental delay, cutaneous syndactyly, and 

lipoma/fatty tissue overgrowth. Among individuals in whom extensive phenotype information was 

available (PeDRA cohort, n=10; NIH cohort, n=2), seizures, macrocephaly or hydrocephalus were 

not described. Individuals had been previously diagnosed with various acronyms or eponyms 

including: Klippel-Trenaunay Syndrome, CLOVES syndrome, and PROS. 

 

DISCUSSION 

PIK3R1 is ubiquitously expressed and has important roles in physiology and disease. It 

encodes the p85a, p55a and p50a regulatory subunits of class 1A PI3K, which bind tightly to any 

of the p110a, b or d catalytic subunits. It is the p110a subunit, encoded by PIK3CA, which is by 

far the most commonly mutated and activated in cancer and overgrowth syndromes. PI3K 

transduces cell surface activation of receptor tyrosine kinase growth factor and hormone 

receptors into downstream activation of AKT and other pathways to regulate cell metabolism, 



 

8 
 

size, differentiation, proliferation, migration, and apoptosis.14,15 The PI3K/AKT pathway is 

constitutively activated in affected tissue from many vascular malformations,1,16,17 primarily 

through mosaic variation in PIK3CA, as in cancer.  

PIK3R1 variation in the setting of vascular malformation with overgrowth has been rarely 

reported. We previously described a single individual harboring a somatic mosaic PIK3R1 variant, 

p.(Lys567Glu), with capillary and lymphatic malformation, and leg length discrepancy (individual 

4 as referenced in this cohort).3 A further patient harboring a PIK3R1 iSH2 domain variant, 

p.(Asn564Lys), was reported to have macrocephaly, tracheomalacia and cardiovascular 

malformation described by the authors as in the context of megalencephaly-capillary malformation 

(MCAP) syndrome, as well as recurrent infections in keeping with Activated PI3K-Delta Syndrome 

2 (APDS2).18 We confirm in a large cohort that somatic mosaic PIK3R1 variants are a significant 

cause of vascular malformation and overgrowth. The phenotypes observed in individuals with 

somatic mosaic variants in PIK3R1 are similar to those associated with mosaic PIK3CA hotspot 

variants. All individuals with mosaic PIK3R1 variants had red-purple, geographic vascular stains, 

most with associated venous engorgement, venous prominence and soft tissue or bone 

overgrowth, but this tended to be mild and relatively uniform. One individual with a unique variant 

within the N-terminal SH2 domain, p.(Gly376Arg), had a light pink reticulate vascular stain with 

associated limb undergrowth. Residue 376 has been designated as a cancer hotspot, with the 

variant itself, p.(Gly376Arg), functionally characterized as capable of inducing in-vitro oncogenic 

transformation and activation of p110a. 19,20In total, the observed clinical features among the 

individuals assembled within our cohort suggests that somatic mosaic variants in PIK3R1 activate 

the PI3K pathway, however the degree of activation, particularly in comparison to disease-

associated variation in PIK3CA, requires further study. 

As is the case for somatic mosaic overgrowth-associated variants in PIK3CA and AKT1, 

mosaic PIK3R1 variants are also found in cancer.21 PIK3CA is more commonly altered in cancer 

in comparison to PIK3R1. Among 181 studies with non-redundant samples curated in cBioPortal 
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encompassing in total 47,580 samples, 10.3% harbored a PIK3CA variant, as opposed to 2.1% 

for PIK3R1 (date accessed 11-11-2020). Among this curated dataset, in-frame variants were 

more common in PIK3R1, (22.2% of all variants), than in PIK3CA, (2.5% of all variants). Similarly, 

in our PeDRA multi-site network with vascular anomalies and overgrowth, PIK3R1 variants were 

less common (9.2%, 10/108) than variants in PIK3CA (39.8%, 43/108 individuals), with notable 

enrichment of in-frame variants in PIK3R1 (Supplemental Figure 1). 

Constitutional variants in PIK3R1 have been shown to exhibit striking genotype-phenotype 

correlation. Most pertinent to this study, variants disrupting canonical splicing of exon 11 and 

leading to in-frame deletions in the N-terminal of the inter SH2 domain cause APDS2, an 

immunodeficiency characterized by recurrent infections and lymphoproliferation.22 

Hyperactivation of PI3K signaling in APDS2 has been demonstrated in lymphocytes, yet despite 

ubiquitous expression of the pathogenic variant, associated overgrowth has been exceedingly 

rarely described.18,23 In vitro studies have shown that APDS2 variants in PIK3R1 cause distinct 

patterns of hyperactivation of p110δ, the dominant lymphocyte catalytic subunit, and p110α, the 

ubiquitous growth-promoting subunit, based on subtle differences in the inhibitory molecular 

interactions of the regulatory and catalytic subunits: although both are hyperactivated, basal 

hyperactivation of p110δ was greater than 300 fold, while basal activation of p110α was only 2 

fold.24 This establishes that subtle differences in molecular interactions at the dynamic interface 

of regulatory and catalytic subunits can have major effects on the pattern of biochemical activation 

of mutant holoenzyme.  This has yet to be studied for vascular and overgrowth-related PIK3R1 

variants, but it is plausible that these, too, result in a distinct profile of biochemical activation of 

different catalytic subunits.  A full account of biochemical differences will also have to address 

any effects of variations in PI3K subunit expression and stoichiometry in various tissues, which is 

known to modulate PI3K activity.  

In the aforementioned individual described with features of APDS2 and MCAP, the 

pathogenic heterozygous PIK3R1 variant, p.(Asn564Lys), was associated with mildly increased 
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lymphocyte AKT phosphorylation.18 A different missense change at codon 564, p.(Asn564Asp), 

was the most frequently detected variant in our vascular malformation and overgrowth cohort and 

is also described in cancer.  Interestingly, in biochemical studies it has been shown to increase 

basal activity of p110α and β significantly more than δ, a pattern opposite to that described for the 

APDS2 variant, albeit in a different experimental paradigm.25  Overt clinical manifestations of 

immune dysregulation were not identified in any of the individuals within our cohort, however; 

most patients did not undergo systematic laboratory evaluation for abnormalities in B cells and T 

cells.   

In contrast to APDS2, constitutional PIK3R1 loss-of-function variants, predominantly in the 

C-terminal SH2 domain, have been shown to cause SHORT syndrome (Short stature-

Hyperextensibility-hernia-Ocular depression-Rieger anomaly-Teething delay).26 These variants 

disrupt association of PI3K holoenzyme with activated RTKs, leading to downstream 

hypostimulation of the PI3K/AKT axis in response to ligand stimulation. The phenotype is 

correspondingly the “inverse” of vascular malformations and overgrowth, including intrauterine 

growth restriction, lipoatrophy, and insulin resistance/diabetes.27 Of note, very rare reports of 

phenotypic overlap have been described between APDS2 and SHORT syndrome.28 In principal, 

these findings suggest that there are largely distinct spectra of PIK3R1 variants associated with 

these three disorders. Biochemical studies demonstrate that differences between SHORT 

syndrome and APDS2 are attributable to different profiles of activation or repression of PIK3CA 

and PIK3CD by mutant PIK3R1 products.  

The mutational spectrum of PIK3R1-related somatic mosaic overgrowth is largely distinct 

from the constitutional PIK3R1-related disorders, and no apparent loss of function variants were 

seen among 17 unrelated affected individuals. Recurrent missense variants were identified, with 

one variant observed in affected tissue from three individuals, p.(Lys567Glu), and one variant in 

six individuals, p.(Asn564Asp). Indel variants were a frequent observation within this cohort with 

7/17 (41%) variants of this type detected. These included three predicted in-frame events and 
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four splice-site alterations, the latter recurrently located at the intron 13/exon 14 junction 

(NM_181523.3) (Supplemental Figure 2, Supplemental Table I). Due to the genomic architecture 

in this region, codon 582, which encodes a methionine, is split across exons 13 and 14. 

Furthermore, the intron 13/exon 14 junction consists of a spanning GGT sequence which is 

repeated once in exon 14. Genomic complexity and variability in published variant descriptions 

within this region further confound interpretation. Based solely on the observed sequencing data 

and established bioinformatic and nomenclature conventions, we would describe one such 

variant, c.1748_1750del, as predicted to encode p.(Trp583del). Notably, this variant has been 

reported previously in cancer literature and databases described as Trp583del, or as a splice 

variant affecting methionine codon 582.10,29,30 In cancer studies, RNA sequencing demonstrates 

that variably sized indel splice variants impacting the splice acceptor (described as M582_splice) 

result in in-frame exon 14 skipping.11 Based on these data, the protein consequence of these 

exon 14 skipping variants should be described as p.(Met582_Asp605delinsIle).  

Both simple and complex indels are enriched in PIK3R1 at recurrent genomic regions 

defined as hotspots occurring within discrete clusters within the SH2 and inter SH2 domains, with 

demonstrated statistical significance observed from large cancer datasets (Supplemental Table 

I) (cancerhotspots.org).11,12,31 One such variant in our cohort, p.(Gln579_Tyr580del), has been 

shown to demonstrate nearly two-fold increased activity as measured by an in vitro 

phosphatidylinositol phosphorylation assay, retaining p110a binding but losing inhibitory 

activity.25,32 Further studies to establish the activation pattern conferred by PIK3R1 variants 

associated with vascular malformations and overgrowth are needed.  Moreover, characterization 

of PIK3R1 variants and functional impact are of particular importance in consideration of 

treatment.  The application of targeted therapeutics has been previously investigated in the setting 

of vascular malformation and somatic overgrowth.  Importantly, studies of alpelisib, a targeted 

inhibitor of p110a, have demonstrated efficacy in PROS with attenuation of  disease 
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symptomology and may reasonably be considered for further study in the setting of PIK3R1 

variation.33 

The somatic mosaic PIK3R1 variants we describe in vascular malformations and 

overgrowth further extend our understanding of PIK3R1, whose genetic perturbation produces 

pleiotropic manifestations. Several features of the vascular phenotype are the reverse of SHORT 

syndrome, displaying vascular and soft tissue overgrowth as opposed to short stature, reduced 

adipose tissue, and tissue underdevelopment observed in SHORT syndrome. Divergent clinical 

phenotypes are determined by the nature of the PIK3R1 alteration, the specificity of the 

consequences for PIK3Ca- and PIK3Cd-mediated effects, and the timing and distribution of the 

alteration during embryogenesis. Disease-associated PIK3R1 variants are enriched for indel 

events in both cancer and vascular anomalies with overgrowth. Detection of such variants is 

bioinformatically challenging, and further complicated by non-standardized annotation of the 

variant nomenclature. As such, these indel events are subject to ascertainment bias with 

additional study needed to discern frequency. Furthermore, studies to elucidate the molecular 

mechanisms underlying pathogenic variation of PIK3R1 with widely disparate clinical phenotypes, 

including both under- and overgrowth syndromes and immunoregulation, will unify our 

understanding of this critical cellular proliferation pathway and provide further insight into 

treatment.  
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FIGURE LEGENDS 

Figure 1.. Domain structure of the longest PIK3R1 protein product showing distribution 

of monogenic disease-associated variants. Variants described in this study in association 

with a vascular malformation/overgrowth phenotype (top row). Variants described as pathogenic 

or likely pathogenic in the ClinVar database (accessed 11-13-2020 and filtered to encompass 

only variation less than 51 bp and with a described genetic condition) associated with SHORT 

syndrome (middle row) or Activated PI3K-Delta Syndrome 2 (bottom row).  

 

Figure 2. Patient photographs of characteristic clinical phenotype. A. Capillary venous 

malformation with limb overgrowth (Klippel-Trenaunay), B. Macrodactyly with sandal toe 

deformity  
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Figure 1 
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Figure 2 
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Table I 
 
PIK3R1 Coding 

Variant 
(NM_181523.3) 

Predicted Protein 
Consequence 

Protein Domain Tissue 
Type 

Tissue Source VAF; 
Total 
Depth 

at 
Variant 
Position 

IND 

c.1126G>A p.(Gly376Arg) SH2  FT PB; Reticulated port 
wine stain of left leg 

2.9; 
2772 

13 

c.1355_1365delins 
TTCAAGAAAAAAGTT
TCTTGAAA 

p.(Tyr452_Gln455 
delinsPheGlnGluLy
sSerPheLeuLys) 

PI3K_P85_iSH2 FFPE EB; VM with features 
of AVM involving the 
epidermis/regional 
fibroadipose tissue 
on dorsum of left 

foot 

6.4; 
1086 

17 

c.1392_1403del 
TAGATTATATGA 

p.(Asp464_Tyr467
del) 

PI3K_P85_iSH2 FT Affected Skin 1.5; 
1290 

14 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 CT Affected Tissue 39.8*; 
1224 

1 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 FT Affected Tissue 24; 321 2 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 FFPE EB; Soft tissue mass 
consistent with a 
benign vascular 

malformation of the 
left forearm 

3.4; 
1980 

3 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 FT PB; Affected Skin 2.8; 
2779 

10 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 FT PB; Affected Skin 2.2; 
4159 

12 

c.1690A>G p.(Asn564Asp) PI3K_P85_iSH2 FT PB; Affected Skin 1.8; 
6616 

16 
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c.1699A>G p.(Lys567Glu) PI3K_P85_iSH2 FT PB; Affected Skin 4.1; 
2675 

4 

c.1699A>G p.(Lys567Glu) PI3K_P85_iSH2 FT PB; Affected Skin 2.3; 
2737 

9 

c.1699A>G p.(Lys567Glu) PI3K_P85_iSH2 FT PB; Affected Skin 1.1; 
1425 

11 

c.1735_1740del 
CAATAC 

p.(Gln579_Tyr580
del) 

PI3K_P85_iSH2 FT PB; Affected Skin 13.3; 
1832 

5 

c.1746-6_1751del 
TTTCAGGTGGTT 

p.(Met582_Asp60
5delinsIle)   

PI3K_P85_iSH2 FT PB; Affected Skin 3.1; 
4205 

6 

c.1746-5_1748del 
TTCAGGTG 

p.(Met582_Asp60
5delinsIle)   

PI3K_P85_iSH2 FFPE EB; Affected Skin 5.9; 
1174 

7 

c.1748_1750delGGT p.(Met582_Asp60
5delinsIle)   

PI3K_P85_iSH2 FT PB; Affected Skin 1.4; 
2886 

8 

c.1748_1750delGGT p.(Met582_Asp60
5delinsIle)   

PI3K_P85_iSH2 FT PB; Port wine stain of 
right forearm 

2.2; 
3317 

15 

 
FT= Fresh frozen tissue; FFPE= Formalin-fixed paraffin-embedded tissue; CT=cultured tissue; PB= Punch 
biopsy; EB= Excisional biopsy; VM= vascular malformation; AVM= arteriovenous malformation 
 
* For individual 1, five samples of affected tissue were assayed by next-generation sequencing (NGS) or 
restriction fragment length polymorphism (RFLP) studies.  Tissues including skin (NGS, 39.8% VAF; RFLP, 
55.6% VAF), bone (RFLP, 26.49% VAF), cartilage (RFLP, 28.1% VAF), fat (RFLP, 0.96% VAF) and a mixed 
sample (RFLP, 1.25% VAF) were all cultured and DNA isolated from cultured cells was analyzed.  
Uncultured biopsy samples were not genotyped. Blood & unaffected fibroblasts were not observed to 
harbor the variant.  
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Table II 

    Phenotypic Features     

IND Age 
(y)* DD CM LM VM OVG Skeletal 

Abnormalities Other Data 
PIK3R1 Coding  

Variant 
(NM_181523.3) 

Variant 
Classification 

and Type 

1 10 N Y Y Y Y Macrodactyly, 
sandal gap Fatty OVG c.1690A>G Pathogenic; 

Missense 

2 5 N Y Y Y Y 

Macrodactyly,  
Leg length 

discrepancy, 
sandal gap 

Right congenital 
buphthalmos 
(congenital 

toxoplasmosis), 
Right anterior 

segment 
dysgenesis with 
glaucoma, Right 
microphthalmia 

c.1690A>G Pathogenic; 
Missense 

3 6 NP NP NP NP NP NP 

 Indication: 
Congenital 

malformation 
syndrome 

involving early 
overgrowth; 
Concern for 

CLOVES 

c.1690A>G Pathogenic; 
Missense 

4** 17 N Y Y Y Y Leg length 
discrepancy   c.1699A>G Pathogenic; 

Missense 

5 50 N Y Y Y Y Macrodactyly, 
syndactyly Lipoma c.1735_1740delC

AATAC 

Pathogenic; 
In-frame 
Deletion 

6 12 Y Y N N Y N   
c.1746-

6_1751delTTTCA
GGTGGTT 

Pathogenic; 
Splice-site 

7 30 N Y N Y Y Macrodactyly, 
sandal gap   

c.1746-
5_1748delTTCAG

GTG 

Pathogenic; 
Splice-site  

8 59 N N N Y Y N   c.1748_1750delG
GT 

Pathogenic; 
Splice-site  
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9 21 N Y N Y Y N   c.1699A>G Pathogenic; 
Missense 

10 18 N Y Y Y Y N Lipoma c.1690A>G Pathogenic; 
Missense 

11 51 N Y N Y Y Leg length 
discrepancy   c.1699A>G Pathogenic; 

Missense 

12 10 N Y Y Y Y N Frontal Bossing c.1690A>G Pathogenic; 
Missense 

13 1 NP NP NP NP NP NP 

Indication: 
Reticulated port 
wine stain of left 
leg also affecting 

left side of 
scrotum; Left leg 
hypoplastic; Left 
testicular nubbin   

c.1126G>A Pathogenic;  
Missense 

14 2 NP NP NP NP NP NP 

Indication: 
Klippel-

Trenaunay 
syndrome 

c.1392_1403del 
TAGATTATATGA 

Likely 
Pathogenic; 

In-frame 
Deletion 

15 20 NP NP NP NP NP NP 
 Indication: 

Vascular nevus, 
hemihypertrophy  

c.1748_1750delG
GT 

Pathogenic; 
Splice-site 

16 39 N Y Y Y Y N   c.1690A>G Pathogenic; 
Missense 

17 15 NP NP NP NP NP NP 

Indication: 
Klippel-

Trenaunay 
syndrome; 
Vascular 

malformation 
and lipoma of left 

foot 

c.1355_1365 
delins 

TTCAAGAAAAAA
GTTTCTTGAAA 

Likely 
Pathogenic; 

In-frame 
Deletion 

 * Individual’s age at time of enrollment in years 

** Individual described previously in Siegel et al., 2018 (PMID: 29174369) 
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IND= Individual, DD= Developmental Delay, CM= Capillary Malformation, LM= Lymphatic 

Malformation, VM= Venous Malformation, OVG= Overgrowth, N= No; Y= Yes; NP= Not 

phenotyped by expert review, therefore indication for study listed in Other Data 

 



Supplementary Material 

Methodology 

Primary and Washington University School of Medicine Cohorts 

Sequencing studies of the primary cohort (consisting of a 16-institution collaborative network), and the 
Washington University School of Medicine cohort encompassed the methodologies described herein. 
Sequencing libraries were created following acoustic-focused fragmentation (Covaris), DNA end-repair, A-
tailing, and indexing using the KAPA HyperPrep Kit (Roche Sequencing and Life Science KAPA Biosystems, 
Wilmington, MA) or Agilent SureSelect Library Kit (Agilent, Santa Clara, CA). Adapter-ligated DNA was 
subjected to limited-cycle amplification prior to target enrichment with either custom DNA or RNA 
capture probes (Integrated DNA Technologies, Coralville, IA or Agilent, respectively). Target capture space 
encompassed between 390 kb and 682 kb depending on assay version, ranging between 131-177 genes 
enriched for loci involved in cell signaling, oncogenesis and tumor suppression.  

High-depth massively parallel sequencing was performed on Illumina instrumentation (Ilumina, Inc., San 
Diego, CA) to obtain short paired-end reads (101 or 151 bp) with average, unique on-target read depths 
of >1,000X across the capture space for high sensitivity in variant calling. 

To orthogonally verify somatic variants at low allele frequency observed in PIK3R1 in the primary cohort, 
two samples with available residual nucleic acid (representing disease-involved tissue from individual 4 
and individual 6) were utilized for high-depth amplicon sequencing. PIK3R1 primers were designed to 
encompass both the previously detected single nucleotide variant (SNV) in individual 4 and small deletion 
in individual 6 within a 296 bp PCR product: Forward primer 5'AGAAGCAGGCAGCTGAGTAT (GRCh37 
chr5:67,591,056-67,591,075) and reverse primer 5'ATCTTCTGCTATCACCATCTTT (GRCh37 
chr5:67,591,330-67,591,351). These amplified products were size confirmed, ligated with dual-match 
Illumina adapters (AGAAGGAC and AGAAGCCT, respectively) and re-amplified with Illumina universal 
P5/P7 primers. The amplicons were diluted to 50fM and sequenced on the Illumina MiniSeq. 

Following massively parallel sequencing of captured libraries, BAM files were visualized using the 
Integrative Genomics Viewer1 and demonstrated the expected SNV (c.1699A>G) and deletion event 
(c.1746-6_1751delTTTCAGGTGGTT) harbored by individuals 4 and 6, respectively. The c.1699A>G 
substitution (individual 4) was supported by 85 reads out of 2,259 total reads (3.8%). Amplicon sequencing 
data on individual 6 demonstrated reduced read support of 1526 averaged reads observed across 
positions chr5:67591239-67591250 representing the left-aligned deletion event in the BAM file. 
Immediately flanking this depressed read count value at chr5:67591238 and chr5:67591251, coverage 
increased to 1,655 reads supporting the small 12 bp deletion present at frequency of 7.8%.  

The National Institutes of Health Cohort 

The individuals evaluated at the NIH were first screened with a restriction fragment length polymorphism 
(RFLP) panel that tests for four common variants in PIK3CA and the c.49G>A p.(E17K) AKT1 variant. RFLP 
negative samples were then reflexed to a custom capture next-generation sequencing (NGS) panel that 
interrogated >250 genes, including PIK3R1, and sequenced on an Illumina MiSeq instrument. The 
c.1690A>G variant in PIK3R1 detected in individuals 1 and 2 was confirmed using a custom RFLP assay.  

  



Variant Interpretation 

Applicable criteria for the scoring of mosaic variation described within this cohort was adapted from 
Richards et al. as determined by CEC and LGB.2 

Strong Evidence of Pathogenicity Criteria: 

PS2 

The observation of apparent somatic mosaicism was considered in the interpretation schema as applied 
to the existing de novo criteria in the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology (ACMG/AMP) standards and guidelines for variant interpretation.2 
Variants were considered to be of somatic etiology if a variant allele frequency/fraction (VAF) ranging 
between 1-25% was detected in a given sample or if a variant was present at differing frequencies among 
studied tissues from the same individual. Variants detected with a VAF of ≥ 3% as determined at the level 
of the coding variant (among any tested sample within the cohort in the case of recurrent coding 
variation), with no discernable strand bias, in regions absent of repetition, and sequence homology3 and 
with clean, high-quality reads were considered as de novo events meeting strong criteria (PS2). Those 
variants at <3% VAF were considered as a moderate level of support of de novo status (PS2_Mod). 

PS_Cancer 

A novel strong criterion (PS_CANCER) was applied if the variant was well-represented in cancer as 
identified in the COSMIC database with ≥20 documented instances (cancer.sanger.ac.uk)4 and considered 
to occur in a statistically significant hotspot or region (cancerhotspots.org)5,6 within PIK3R1. This criterion 
was considered a moderate level of evidence if only one of the qualifiers (COSMIC or cancer hotspot) was 
met. 

PS3 

Functional studies were applied on the basis of available data in the literature using well-established 
models demonstrating downstream impact of the variant on RNA structure, gene expression or protein 
function. 

Moderate Evidence of Pathogenicity Criteria: 

PS4_Mod 

At the level of the predicted amino acid change, the prevalence of the variant within our combined cohort 
was considered as a moderate level of evidence as applied in the setting of PS4 (prevalence of the variant 
in affected individuals is significantly increased compared with the prevalence in controls in the absence 
of a defined relative risk or odds ratio), with the observation of ≥5 unique occurrences in our cohort. PS4 
was further downgraded to a supporting level of evidence where <5 and ≥3 unrelated individuals harbored 
the same predicted amino acid change within our cohort. 

PM4 

 A moderate level of evidence criterion (PM4) was applied for protein length changes related to 
insertion/deletion events in a non-repeat region predicted to result in an in-frame protein product.  

 

  



Supporting Evidence of Pathogenicity Criteria: 

PP2  

The criterion PP2 was applied for all PIK3R1 missense variants due to constraint against missense changes 
in the gene, in the setting of a low rate of benign missense variation, given that missense changes are a 
common mechanism of both cancer and constitutional disease.  

Criteria Not Applied: 

PM2 

Given the nature of the somatic variation under study, PM2 (absent from control or population databases) 
was not formally applied as evidence used in the setting of variant classification.  

PP3 

In silico prediction scores (PP3) were not applied due to the discordance in algorithms adequately 
identifying activating alterations.  
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Supplementary Figure 1:  Schematic Representation of PIK3R1 Variants in Cancer and Vascular 
Malformation/Overgrowth 

Plot demonstrating the frequency and location of insertion/deletion (indel) events in PIK3R1 among a 
curated set of 181 non-redundant studies consisting of 47,580 cancer samples visualizable within 
cBioPortal (accessed 11-11-2020).7,8 Indel hotspot events are clustered within the SH2 and inter-SH2 
domains. Triangles highlight the frequency and location of indels among our multi-site cohort with 
vascular anomalies and overgrowth. 

  



 
 

Supplementary Figure 2:  Splice-site Variants among Individuals with Vascular 
Malformation/Overgrowth as Visualized in Aligned Sequence Reads 

Visualization within the Integrative Genomics Viewer (IGV)1 of aligned reads in the BAM file derived from 
high-depth next-generation sequencing following target capture of the affected tissue of three 
individuals. A. Individual 6 harboring a 12 bp splice-site variant, B. Individual 7 harboring an 8 bp splice-
site variant, C. Individual 8 harboring a 3 bp splice-site variant. These splice acceptor variants are predicted 
to encode an in-frame exon 14 skipping event, a described consequence of variants of this type in cancer. 

 



Individual
PIK3R1  DNA Variant 

GRCh37/hg19*
Location in Gene 

PIK3R1  Coding Variant 
(NM_181523.3)*

13 chr5:67589138G>A Exon 10 c.1126G>A

17
chr5:67589592_67589602deli
nsTTCAAGAAAAAAGTTTCTTGAAA

Exon 11
c.1355_1365delinsTTCAAGAA

AAAAGTTTCTTGAAA

14
chr5:67589629_67589640delT

AGATTATATGA
Exon 11

c.1392_1403delTAGATTATAT
GA

1  chr5:67591097A>G Exon 13 c.1690A>G

2  chr5:67591097A>G Exon 13 c.1690A>G

3  chr5:67591097A>G Exon 13 c.1690A>G

10  chr5:67591097A>G Exon 13 c.1690A>G

12  chr5:67591097A>G Exon 13 c.1690A>G

16  chr5:67591097A>G Exon 13 c.1690A>G

4 chr5:67591106A>G Exon 13 c.1699A>G

9 chr5:67591106A>G Exon 13 c.1699A>G



11 chr5:67591106A>G Exon 13 c.1699A>G

5
chr5:67591142_67591142delC

AATAC
Exon 13 c.1735_1740delCAATAC

6
chr5:67591242_67591253delT

TTCAGGTGGTT
Intron13/ Exon 

14 Junction
c.1746-

6_1751delTTTCAGGTGGTT

7
chr5:67591243_67591250delT

TCAGGTG 
Intron13/ Exon 

14 Junction
c.1746-5_1748delTTCAGGTG

8
chr5:67591250_67591252delG

GT
Intron13/ Exon 

14 Junction
c.1748_1750delGGT

15
chr5:67591250_67591252delG

GT
Intron13/ Exon 

14 Junction
c.1748_1750delGGT

*As per Human Genome Variation Society (HGVS) nomenclature conventions, for all variant descriptions the most 3’ position possible of the reference sequence is arbitrarily assigned to have been changed (3’rule) (PMID: 26931183)

**PI3K_P85_iSH2 = Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain

*** FT=  Fresh Frozen Tissue; FFPE= Formalin-Fixed Paraffin-Embedded Tissue; CT= Cultured Tissue

dPIK3R1  deletions occuring within the PI3K_p85_iSH2 domain among a region of frequent insertion/deletion events

cvarsome.com (PMID: 30376034)  All variant attributes were manually curated through the use of genomic databases and literature, with Varsome.com used as one such interface to access links to data sources and to serve as a visualization of local sequence context

^  ̂For deletion variants, base position 5' of deletion start used for depth count

eDeletion events matched on genomic coordinates in COSMIC

aCOSMIC  (v88) https://cancer.sanger.ac.uk/cosmic (Accessed 4-7-2019) (PMID: 30371878)
bcancerhotspots.org (accessed 11-8-2020) (PMID: 26619011; 28115009) 



 Predicted Protein 
Consequence*

Variant Classification 
(ACMG/AMP Modified Criteria)

ClinVar Accession

p.(Gly376Arg)
Pathogenic (PS_CANCER, PS3, 

PS2_Mod, PP2) 
SCV001478395

p.(Tyr452_Gln455delinsPheGlnG
luLysSerPheLeuLys)

Likely Pathogenic (PS2, 
PM_CANCER, PM4) 

SCV001478396

p.(Asp464_Tyr467del)
Likely Pathogenic (PS2_Mod, 

PM_CANCER, PM4) 
SCV001478397

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Asn564Asp)
Pathogenic (PS_CANCER, PS2, 

PS3, PS4_Mod, PP2) 
SCV001478398

p.(Lys567Glu)
Pathogenic (PS_CANCER, PS2, 

PS4_Sup, PP2) 
SCV001478399

p.(Lys567Glu)
Pathogenic (PS_CANCER, PS2, 

PS4_Sup, PP2) 
SCV001478399



p.(Lys567Glu)
Pathogenic (PS_CANCER, PS2, 

PS4_Sup, PP2) 
SCV001478399

p.(Gln579_Tyr580del)
 Pathogenic (PS2, PS3, 

PM_CANCER, PM4,)
SCV001478400

p.(Met582_Asp605delinsIle)  Pathogenic (PS2, PS3, 
PM_CANCER, PM4, PS4_Sup)

SCV001478401

p.(Met582_Asp605delinsIle)  Pathogenic (PS2, PS3, 
PM_CANCER, PM4, PS4_Sup)

SCV001478402

p.(Met582_Asp605delinsIle)  Pathogenic (PS2, PS3, 
PM_CANCER, PM4, PS4_Sup)

SCV001478403

p.(Met582_Asp605delinsIle)  Pathogenic (PS2, PS3, 
PM_CANCER, PM4, PS4_Sup)

SCV001478403

*As per Human Genome Variation Society (HGVS) nomenclature conventions, for all variant descriptions the most 3’ position possible of the reference sequence is arbitrarily assigned to have been changed (3’rule) (PMID: 26931183)

**PI3K_P85_iSH2 = Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain

*** FT=  Fresh Frozen Tissue; FFPE= Formalin-Fixed Paraffin-Embedded Tissue; CT= Cultured Tissue

dPIK3R1  deletions occuring within the PI3K_p85_iSH2 domain among a region of frequent insertion/deletion events

cvarsome.com (PMID: 30376034)  All variant attributes were manually curated through the use of genomic databases and literature, with Varsome.com used as one such interface to access links to data sources and to serve as a visualization of local sequence context

^  ̂For deletion variants, base position 5' of deletion start used for depth count

eDeletion events matched on genomic coordinates in COSMIC

aCOSMIC  (v88) https://cancer.sanger.ac.uk/cosmic (Accessed 4-7-2019) (PMID: 30371878)
bcancerhotspots.org (accessed 11-8-2020) (PMID: 26619011; 28115009) 



Variant Type
Protein 

Domain**
Tissue 

Sequenced***

Variant Allele 
Frequency/ 

Fraction (VAF)% by 
NGS

Assay  Methodology

Missense SH2 FT 2.9
NGS Gene Panel Custom 

Capture

Inframe Deletion PI3K_P85_iSH2 FFPE 6.4
NGS Gene Panel Custom 

Capture

Inframe Deletion PI3K_P85_iSH2 FT 1.5
NGS Gene Panel Custom 

Capture

Missense PI3K_P85_iSH2 CT 39.8
NGS Gene Panel Custom 

Capture; RFLP Variant 
Verification

Missense PI3K_P85_iSH2 FT 24
NGS Gene Panel Custom 

Capture; RFLP Variant 
Verification

Missense PI3K_P85_iSH2 FFPE 3.4
NGS Gene Panel Custom 

Capture

Missense PI3K_P85_iSH2 FT 2.8
NGS Gene Panel Custom 

Capture

Missense PI3K_P85_iSH2 FT 2.2
NGS Gene Panel Custom 

Capture

Missense PI3K_P85_iSH2 FT 1.8
NGS Gene Panel Custom 

Capture

Missense PI3K_P85_iSH2 FT 4.1

NGS Gene Panel Custom 
Capture;  NGS High Depth 

Amplicon Variant 
Verification

Missense PI3K_P85_iSH2 FT 2.3
NGS Gene Panel Custom 

Capture



Missense PI3K_P85_iSH2 FT 1.1
NGS Gene Panel Custom 

Capture

Inframe Deletion PI3K_P85_iSH2 FT 13.3
NGS Gene Panel Custom 

Capture

Splice-site PI3K_P85_iSH2 FT 3.1

NGS Gene Panel Custom 
Capture;  NGS High Depth 

Amplicon Variant 
Verification

Splice-site PI3K_P85_iSH2 FFPE 5.9
NGS Gene Panel Custom 

Capture

Splice-site PI3K_P85_iSH2 FT 1.4
NGS Gene Panel Custom 

Capture

Splice-site PI3K_P85_iSH2 FT 2.2
NGS Gene Panel Custom 

Capture

*As per Human Genome Variation Society (HGVS) nomenclature conventions, for all variant descriptions the most 3’ position possible of the reference sequence is arbitrarily assigned to have been changed (3’rule) (PMID: 26931183)

**PI3K_P85_iSH2 = Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain

*** FT=  Fresh Frozen Tissue; FFPE= Formalin-Fixed Paraffin-Embedded Tissue; CT= Cultured Tissue

dPIK3R1  deletions occuring within the PI3K_p85_iSH2 domain among a region of frequent insertion/deletion events

cvarsome.com (PMID: 30376034)  All variant attributes were manually curated through the use of genomic databases and literature, with Varsome.com used as one such interface to access links to data sources and to serve as a visualization of local sequence context

^  ̂For deletion variants, base position 5' of deletion start used for depth count

eDeletion events matched on genomic coordinates in COSMIC

aCOSMIC  (v88) https://cancer.sanger.ac.uk/cosmic (Accessed 4-7-2019) (PMID: 30371878)
bcancerhotspots.org (accessed 11-8-2020) (PMID: 26619011; 28115009) 



Read Depth at 
Variant 

Position^^

Reference/Alternate 
allele depth (read 

strand counts)

Documented in COSMIC - 
Identical amino acid 

change/Any missense change 
at codon (%)a

Cancer Hotspot (Y/N); 
(Q-value) 

cancerhotspots.orgb

2772
2689 (1483+; 1206-) / 

81 (44+;37-)
26/27 (96.3%)  COSM35827 Y- (1.68 x 10-19)

1086
1002 (527+; 475-) / 83 

(48+; 35-) 0 (0%)d Y- (9.35 x 10-183)

1290
1274 (658+; 616-)/ 15 

(2+; 13-)

14/14 (100%)e COSM3736943, 
COSM4714460, 

COSM4714461, COSM87228 
Y- (9.35 x 10-183)

1224
734 (392+; 342-) / 490 

(267+; 223-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

321
243 (119+; 124-)  / 78 

(39+; 39-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

1980
1911 (958+; 953-) / 68 

(31+; 37-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

2779
2697 (1363+; 1334-)/ 

78(40+; 38-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

4159
4062 (2058+;2004-)/ 

93 (55+;38-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

6616
6494 (3252+; 3242-)/ 

118 (56+;62-)
41/43 (95.3%) COSM42912 Y- (1.08 x 10-23)

2675
2563 (1286+; 1277-)/ 

111 (55+; 56-) 
33/33 (100%) COSM1069611 Y-(3.35 x 10-17)

2737
2674 (1341+; 1333-)/ 

62 (29+;33-)
33/33 (100%) COSM1069611 Y-(3.35 x 10-17)



1425
1408 (713+;695-)/ 

15(11+;4-)
33/33 (100%) COSM1069611 Y-(3.35 x 10-17)

1832
1572 (695+;876-)/ 

245(101+;144-) 0 (0%)c Y- (8.13 x 10-89)

4205
4083 (2023+, 2060-)/ 

131 (60+, 71-) 0 (0%)c Y- (3.86 x 10-13)

1174
1096 (622+; 474-)/ 

68(43+;25-) 0 (0%)c Y- (3.86 x 10-13)

2886
2845 (1362+; 1483-)/ 

40 (21+; 19-)
3/3 (100%)** COSM2157179 Y- (3.86 x 10-13)

3317
3225 (1716+; 1509-) / 

90 (45+; 45-)
3/3 (100%)** COSM2157179 Y- (3.86 x 10-13)

*As per Human Genome Variation Society (HGVS) nomenclature conventions, for all variant descriptions the most 3’ position possible of the reference sequence is arbitrarily assigned to have been changed (3’rule) (PMID: 26931183)

**PI3K_P85_iSH2 = Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain

*** FT=  Fresh Frozen Tissue; FFPE= Formalin-Fixed Paraffin-Embedded Tissue; CT= Cultured Tissue

dPIK3R1  deletions occuring within the PI3K_p85_iSH2 domain among a region of frequent insertion/deletion events

cvarsome.com (PMID: 30376034)  All variant attributes were manually curated through the use of genomic databases and literature, with Varsome.com used as one such interface to access links to data sources and to serve as a visualization of local sequence context

^  ̂For deletion variants, base position 5' of deletion start used for depth count

eDeletion events matched on genomic coordinates in COSMIC

aCOSMIC  (v88) https://cancer.sanger.ac.uk/cosmic (Accessed 4-7-2019) (PMID: 30371878)
bcancerhotspots.org (accessed 11-8-2020) (PMID: 26619011; 28115009) 



VarSome Variant Search Engine Linkc

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1126G%3EA

https://varsome.com/variant/hg19/chr5
%2067589591%20.%20TATAACACTCAG%

20TTTCAAGAAAAAAGTTTCTTGAAA

https://varsome.com/variant/hg19/5%3A
67589623%3A12%3A

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1690A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1699A%3EG

https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1699A%3EG



https://varsome.com/variant/hg19/NM_1
81523.3(PIK3R1)%3Ac.1699A%3EG

https://varsome.com/variant/hg19/5%3A
67591140%3A6%3A

https://varsome.com/variant/hg19/5%3A
67591239%3A12%3A

https://varsome.com/variant/hg19/5%3A
67591243%3A8%3A

https://varsome.com/variant/hg19/5%3A
67591247%3A3%3A

https://varsome.com/variant/hg19/5%3A
67591247%3A3%3A
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