466 research outputs found

    Fire Alters Plant Microbiome Assembly Patterns: Integrating the Plant and Soil Microbial Response to Disturbance

    Get PDF
    It is increasingly evident that the plant microbiome is a strong determinant of plant health. While the ability to manipulate the microbiome in plants and ecosystems recovering from disturbance may be useful, our understanding of the plant microbiome in regenerating plant communities is currently limited. Using 16S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region amplicon sequencing, we characterized the leaf, stem, fine root, rhizome, and rhizosphere microbiome of \u3c 1-yr-old aspen saplings and the associated bulk soil after a recent high-intensity prescribed fire across a burn severity gradient. Consistent with previous studies, we found that soil microbiomes are responsive to fire. We extend these findings by showing that certain plant tissue microbiomes also change in response to fire. Differences in soil microbiome compositions could be attributed to soil chemical characteristics, but, generally, plant tissue microbiomes were not related to plant tissue elemental concentrations. Using source tracking modeling, we also show that fire influences the relative dominance of microbial inoculum and the vertical inheritance of the sapling microbiome from the parent tree. Overall, our results demonstrate how fire impacts plant microbiome assembly, diversity, and composition and highlights potential for further research towards increasing plant fitness and ecosystem recovery after fire events

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Resolving the Trophic Relations of Cryptic Species: An Example Using Stable Isotope Analysis of Dolphin Teeth

    Get PDF
    Understanding the foraging ecology and diet of animals can play a crucial role in conservation of a species. This is particularly true where species are cryptic and coexist in environments where observing feeding behaviour directly is difficult. Here we present the first information on the foraging ecology of a recently identified species of dolphin (Southern Australian bottlenose dolphin (SABD)) and comparisons to the common bottlenose dolphin (CBD) in Victoria, Australia, using stable isotope analysis of teeth. Stable isotope signatures differed significantly between SABD and CBD for both δ13C (−14.4‰ vs. −15.5‰ respectively) and δ15N (15.9‰ vs. 15.0‰ respectively), suggesting that the two species forage in different areas and consume different prey. This finding supports genetic and morphological data indicating that SABD are distinct from CBD. In Victoria, the SABD is divided into two distinct populations, one in the large drowned river system of Port Phillip Bay and the other in a series of coastal lakes and lagoons called the Gippsland Lakes. Within the SABD species, population differences were apparent. The Port Phillip Bay population displayed a significantly higher δ15N than the Gippsland Lakes population (17.0‰ vs. 15.5‰), suggesting that the Port Phillip Bay population may feed at a higher trophic level - a result which is supported by analysis of local food chains. Important future work is required to further understand the foraging ecology and diet of this newly described, endemic, and potentially endangered species of dolphin

    Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades

    No full text
    Oil pollution entering the marine environment has been an issue of concern for many decades. It can come from riverine or land-based sources, accidental and intentional discharges from ships, or as a by-product of offshore oil extraction. Growing awareness of the impact of oil pollution on the marine environment has led, since the late 1960s, to the introduction of measures to reduce or eliminate pollution from shipping and the offshore oil industry. A framework for environmental protection of the North Sea has developed over many decades through international agreements, regional cooperation, and national measures, while education has also played an important role with modern-day sailors being given due training to understand that dumping waste at sea is illegal in many areas, and is harmful to the marine environment. This paper presents data on trends in pollution from ships and oil installations. While significant reductions in oil pollution have been identified over more than two decades, there remain some areas where action is needed to reduce inputs still further, especially from oil and gas platforms

    Complicated skin, skin structure and soft tissue infections - are we threatened by multi-resistant pathogens?

    Get PDF
    Tissue infections or skin, skin structure, and deep seated soft tissue infections are general terms for infections of the entire skin layer including the subcutaneous and muscle tissue layers and their respective fascia structures. Infections of the different mediastinal fascias (mediastinitis) and retroperitoneal fascia infections also belong to this category. Due to the variability of their clinical presentation, skin and soft tissue infections can be classified according to different features. The following aspects can be used for classification

    Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization

    Get PDF
    The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the common sense hypothesis that the first six hours comprise the period of peak night activity for several species, thereby resulting in a representative sample for the whole night. To this end, we combined re-sampling techniques, species accumulation curves, threshold analysis, and community concordance of species compositional data, and applied them to datasets of three different Neotropical biomes (Amazonia, Atlantic Forest and Cerrado). We show that the strategy of restricting sampling to only six hours of the night frequently results in incomplete sampling representation of the entire bat community investigated. From a quantitative standpoint, results corroborated the existence of a major Sample Area effect in all datasets, although for the Amazonia dataset the six-hour strategy was significantly less species-rich after extrapolation, and for the Cerrado dataset it was more efficient. From the qualitative standpoint, however, results demonstrated that, for all three datasets, the identity of species that are effectively sampled will be inherently impacted by choices of sub-sampling schedule. We also propose an alternative six-hour sampling strategy (at the beginning and the end of a sample night) which performed better when resampling Amazonian and Atlantic Forest datasets on bat assemblages. Given the observed magnitude of our results, we propose that sample representativeness has to be carefully weighed against study objectives, and recommend that the trade-off between logistical constraints and additional sampling performance should be carefully evaluated

    Salmonella in Broiler Litter and Properties of Soil at Farm Location

    Get PDF
    Contamination of litter in a broiler grow-out house with Salmonella prior to placement of a new flock has been shown to be a precursor of the flock's Salmonella contamination further down the production continuum. In the southern USA, broiler grow-out houses are primarily built on dirt pad foundations that are placed directly on top of the native soil surface. Broiler litter is placed directly on the dirt pad. Multiple grow-out flocks are reared on a single litter batch, and the litter is kept in the houses during downtime between flocks. The effects of environmental determinants on conditions in broiler litter, hence Salmonella ecology within it, has received limited attention. In a field study that included broiler farms in the states of Alabama, Mississippi and Texas we assessed Salmonella in broiler litter at the end of downtime between flocks, i.e. at the time of placement of a new flock for rearing. Here we utilized these results and the U.S. General Soil Map (STATSGO) data to test if properties of soil at farm location impacted the probability of Salmonella detection in the litter. The significance of soil properties as risk factors was tested in multilevel regression models after accounting for possible confounding differences among the farms, the participating broiler complexes and companies, and the farms' geographical positioning. Significant associations were observed between infiltration and drainage capabilities of soil at farm location and probability of Salmonella detection in the litter
    corecore