546 research outputs found

    Low-Volume Bodyweight Exercise Training Improves Cardiorespiratory Fitness: A Contemporary Application of the 5BX Approach

    Get PDF
    Non peer-reviewed manuscriptWe examined the effect of a simple bodyweight training (BWT) program, completed thrice weekly for 6 weeks, on cardiorespiratory fitness in inactive adults. The 11-minute session involved five basic exercises, each performed for 60-seconds at a self-selected “challenging” pace, interspersed with recovery periods. Peak oxygen uptake was higher after training compared to a control group (34.2±6.4 vs 30.3±11.1 ml/kg/min, p=0.03). Brief BWT, requiring little space, no equipment, and minimal time commitment, can improve cardiorespiratory fitness.Natural Sciences and Engineering Research Council; McMaster Universit

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance

    Get PDF
    Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity. Mice without endothelial Piezo1 lack obvious phenotype but close inspection reveals a specific effect on endothelium-dependent relaxation in mesenteric resistance artery. Strikingly, the Piezo1 is required for elevated blood pressure during whole body physical activity but not blood pressure during inactivity. Piezo1 is responsible for flow-sensitive non-inactivating non-selective cationic channels which depolarize the membrane potential. As fluid flow increases, depolarization increases to activate voltage-gated Ca2+ channels in the adjacent vascular smooth muscle cells, causing vasoconstriction. Physical performance is compromised in mice which lack endothelial Piezo1 and there is weight loss after sustained activity. The data suggest that Piezo1 channels sense physical activity to advantageously reset vascular control

    Metabolic Factors Limiting Performance in Marathon Runners

    Get PDF
    Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as ‘hitting the wall’), and thousands drop out before reaching the finish lines (approximately 1–2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making ‘hitting the wall’ seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without ‘hitting the wall.’ The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding ‘the wall.’ The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon

    Impact of gonadectomy on blood pressure regulation in ageing male and female rats

    Get PDF
    Sexual dimorphism in blood pressure has been associated with differential expression of the angiotensin II (AII) receptors and with activity of the nervous system. It is generally accepted that aging affects kidney function as well as autonomic nervous system and hormonal balance. Given that hypertension is more prevalent in men than women until women reach their seventh decade we hypothesised that females would be relatively protected from adverse effects of ageing compared to males, and that this would be mediated by the protective effect of ovarian steroids. Intact and gonadectomised male and female normotensive Wistar rats aged 6, 12 and 18 months were used to study renal function, blood pressure, heart rate and blood pressure variability. We observed that intact females had lower levels of proteinuria and higher (12.5%) creatinine clearance compared to intact males, and that this difference was abolished by castration but not by ovariectomy. Ovariectomy resulted in a change by 9% in heart rate, resulting in similar cardiovascular parameters to those observed in males or gonadectomised males. Spectral analysis of systolic blood pressure revealed that high frequency power spectra were significantly elevated in the females vs. males and were reduced by ovariectomy. Taken altogether the results show that females are protected from age-related declining renal function and to a lesser extent from rising blood pressure in comparison to males. Whilst ovariectomy had some deleterious effects in females, the strongest effects were associated with gonadectomy in males, suggesting a damaging effect of male hormones

    Impact of flavonoid-rich black tea and beetroot juice on postprandial peripheral vascular resistance and glucose homeostasis in obese, insulin-resistant men: a randomized controlled trial.

    Get PDF
    BACKGROUND: Insulin-stimulated muscle blood flow facilitates plasma glucose disposal after a meal, a mechanism that is impaired in obese, insulin-resistant volunteers. Nitrate- or flavonoid-rich products, through their proposed effects on nitric oxide, may improve postprandial blood flow and, subsequently, glucose disposal. To investigate whether a single dose of nitrate-rich beetroot juice or flavonoid-rich black tea lowers postprandial muscle vascular resistance in obese volunteers and alters postprandial glucose or insulin concentrations. METHOD: In a randomised, controlled, cross-over study, 16 obese, insulin-resistant males consumed 75 g glucose, which was combined with 100 ml black tea, beetroot juice or control (water). Peripheral vascular resistance (VR), calculated as mean arterial pressure divided by blood flow, was assessed in the arm and leg conduit arteries, resistance arteries and muscle microcirculation across 3 h (every 30-min) after the oral glucose load. RESULTS: During control, we found no postprandial response in VR in conduit, resistance and microvessels (all P > 0.05). Black tea decreased VR compared to control in conduit, resistance and microvessels (all P < 0.05). Beetroot juice decreased postprandial VR in resistance vessels, but not in conduit artery and microvessels. Although postprandial glucose response was similar after all interventions, postprandial insulin response was attenuated by ~29 % after tea (P < 0.0005), but not beetroot juice. CONCLUSIONS: A single dose of black tea decreased peripheral VR across upper and lower limbs after a glucose load which was accompanied by a lower insulin response. Future studies in insulin-resistant subjects are warranted to confirm the observed effects and to explore whether long-term regular tea consumption affects glucose homeostasis. TRIAL REGISTRATION: The study was registered at clinicaltrials.gov on 30(th) November 2012 (NCT01746329)

    Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes

    Get PDF
    Objective Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and controls. Methods Twenty patients with type 2 diabetes and 10 age- and sex-matched controls performed an 8-week training study involving lower limb-based combined aerobic and resistance exercise training. We examined the SFA to study the local effect of exercise, and also the systemic impact of lower limb-based exercise training on peripheral (i.e. BA) and central (i.e. CA) arteries. Wall thickness (WT), diameter and wall:lumen(W:L)-ratios were examined using automated edge detection of ultrasound images. Results Exercise training did not alter SFA or CA diameter in type 2 diabetes or controls (all P > 0.05). BA diameter was increased after training in type 2 diabetes, but not in controls. Exercise training decreased WT and W:L ratio in the SFA and BA, but not in CA in type 2 diabetes. Training did not alter WT or W:L ratio in controls (P > 0.05). Conclusion Lower limb-dominant exercise training causes remodelling of peripheral arteries, supplying active and inactive vascular beds, but not central arteries in type 2 diabetes

    The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea

    Get PDF
    Background: Tulbaghia violacea Harv. (Alliaceae) is used to treat various ailments, including hypertension (HTN) in South Africa. This study aims to evaluate the contributions of muscarinic receptors and changes in plasma aldosterone levels to its anti-hypertensive effect. Methods: In the acute experiments, methanol leaf extracts (MLE) of T. violacea (30–120 mg/kg), muscarine (0.16 -10 μg/kg), and atropine (0.02 - 20.48 mg/kg), and/or the vehicle (dimethylsulfoxide (DMSO) and normal saline (NS)) were respectively and randomly administered intravenously in a group of spontaneously hypertensive (SHR) weighing 300 to 350 g and aged less than 5 months. Subsequently, T. violacea (60 mg/kg) or muscarine (2.5 μg/kg) was infused into eight SHRs, 20 min after atropine (5.12 mg/kg) pre-treatment. In the chronic (21 days) experiments, the SHRs were randomly divided into three groups, and given the vehicle (0.2 ml/day of DMSO and NS), T. violacea (60 mg/kg/day) and captopril (10 mg/kg/day) respectively into the peritoneum, to investigate their effects on blood pressure (BP), heart rate (HR), and plasma aldosterone levels. Systolic BP and HR were measured using tail-cuff plethysmography during the intervention. BP and HR were measured via a pressure transducer connecting the femoral artery and the Powerlab at the end of each intervention in the acute experiment; and on day 22 in the chronic experiment. Results: In the acute experiments, T. violacea, muscarine, and atropine significantly (p < 0.05) reduced BP dose-dependently. T. violacea and muscarine produced dose-dependent decreases in HR, while the effect of atropine on HR varied. After atropine pre-treatment, dose-dependent increases in BP and HR were observed with T. violacea; while the BP and HR effects of muscarine were nullified. In the chronic experiments, the T. violaceatreated and captropril-treated groups had signicantly lower levels of aldosterone in plasma when compared to vehicle-treated group. Compared to the vehicle-treated group, significant reduction in BP was only seen in the captopril-treated group; while no difference in HR was observed among the groups. Conclusion: The results obtained in this study suggest that stimulation of the muscarinic receptors and a reduction in plasma aldosterone levels contribute to the anti-hypertesive effect of T. violacea.IS

    Leg blood flow measurements using venous occlusion plethysmography during head-up tilt

    Get PDF
    We tested whether venous occlusion plethysmography (VOP) is an appropriate method to measure calf blood flow (CBF) during head-up tilt (HUT). CBF measured with VOP was compared with superficial femoral artery blood flow as measured by Doppler ultrasound during incremental tilt angles. Measurements of both methods correlated well (r = 0.86). Reproducibility of VOP was fair in supine position and 30° HUT (CV: 11%–15%). This indicates that VOP is an applicable tool to measure leg blood flow during HUT, especially up to 30° HUT

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided
    corecore