25 research outputs found

    Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection

    BAFF Mediates Splenic B Cell Response and Antibody Production in Experimental Chagas Disease

    Get PDF
    Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Central and South America. It affects 20 million people and about 100 million people are at risk of infection in endemic areas. Some cases have been identified in non-endemic countries as a consequence of blood transfusion and organ transplantation. Chagas disease presents three stages of infection. The acute phase appears one to two weeks after infection and includes fever, swelling around the bite site, enlarged lymph glands and spleen, and fatigue. This stage is characterized by circulating parasites and many immunological disturbances including a massive B cell response. In general, the acute episode self-resolves in about 2 months and is followed by a clinically silent indeterminate phase characterized by absence of circulating parasites. In about one-third of the cases, the indeterminate phase evolves into a chronic phase with clinically defined cardiac or digestive disturbances. Current knowledge suggests that the persistence of parasites coupled with an unbalanced immune response sustain inflammatory response in the chronic stage. We believe that an effective treatment for chronic Chagas disease should combine antiparasitic drugs with immunomodulators aimed at reducing inflammation and autoreactive response. Our findings enlighten a new role of BAFF-BAFF-R signaling in parasite infection that partially controls polyclonal B cell response but not parasitespecific class-switched primary effectors B cells

    Differential Regional Immune Response in Chagas Disease

    Get PDF
    Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection

    Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers

    Get PDF
    corecore