143 research outputs found

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Guidelines for minimal information on cellular senescence experimentation in vivo

    Get PDF
    \ua9 2024 The AuthorsCellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called “minimum information for cellular senescence experimentation in vivo” (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo

    FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Full text link
    Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate

    Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)

    Get PDF
    Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12) and small (3-4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood

    IL6 and CRP haplotypes are associated with COPD risk and systemic inflammation: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated circulating levels of C-reactive protein (CRP), interleukin (IL)-6 and fibrinogen (FG) have been repeatedly associated with many adverse outcomes in patients with chronic obstructive pulmonary disease (COPD). To date, it remains unclear whether and to what extent systemic inflammation is primary or secondary in the pathogenesis of COPD.</p> <p>The aim of this study was to examine the association between haplotypes of <it>CRP</it>, <it>IL6 </it>and <it>FGB </it>genes, systemic inflammation, COPD risk and COPD-related phenotypes (respiratory impairment, exercise capacity and body composition).</p> <p>Methods</p> <p>Eighteen SNPs in three genes, representing optimal haplotype-tagging sets, were genotyped in 355 COPD patients and 195 healthy smokers. Plasma levels of CRP, IL-6 and FG were measured in the total study group. Differences in haplotype distributions were tested using the global and haplotype-specific statistics.</p> <p>Results</p> <p>Raised plasma levels of CRP, IL-6 and fibrinogen were demonstrated in COPD patients. However, COPD population was very heterogeneous: about 40% of patients had no evidence of systemic inflammation (CRP < 3 mg/uL or no inflammatory markers in their top quartile). Global test for haplotype effect indicated association of <it>CRP </it>gene and CRP plasma levels (P = 0.0004) and <it>IL6 </it>gene and COPD (P = 0.003). Subsequent analysis has shown that <it>IL6 </it>haplotype H2, associated with an increased COPD risk (p = 0.004, OR = 4.82; 1.64 to 4.18), was also associated with very low CRP levels (p = 0.0005). None of the genes were associated with COPD-related phenotypes.</p> <p>Conclusion</p> <p>Our findings suggest that common genetic variation in <it>CRP </it>and <it>IL6 </it>genes may contribute to heterogeneity of COPD population associated with systemic inflammation.</p

    Scoring of senescence signalling in multiple human tumour gene expression datasets, identification of a correlation between senescence score and drug toxicity in the NCI60 panel and a pro-inflammatory signature correlating with survival advantage in peritoneal mesothelioma

    Get PDF
    Background: Cellular senescence is a major barrier to tumour progression, though its role in pathogenesis of cancer and other diseases is poorly understood in vivo. Improved understanding of the degree to which latent senescence signalling persists in tumours might identify intervention strategies to provoke "accelerated senescence" responses as a therapeutic outcome. Senescence involves convergence of multiple pathways and requires ongoing dynamic signalling throughout its establishment and maintenance. Recent discovery of several new markers allows for an expression profiling approach to study specific senescence phenotypes in relevant tissue samples. We adopted a "senescence scoring" methodology based on expression profiles of multiple senescence markers to examine the degree to which signals of damage-associated or secretory senescence persist in various human tumours. Results: We first show that scoring captures differential induction of damage or inflammatory pathways in a series of public datasets involving radiotherapy of colon adenocarcinoma, chemotherapy of breast cancer cells, replicative senescence of mesenchymal stem cells, and progression of melanoma. We extended these results to investigate correlations between senescence score and growth inhibition in response to similar to 1500 compounds in the NCI60 panel. Scoring of our own mesenchymal tumour dataset highlighted differential expression of secretory signalling pathways between distinct subgroups of MPNST, liposarcomas and peritoneal mesothelioma. Furthermore, a proinflammatory signature yielded by hierarchical clustering of secretory markers showed prognostic significance in mesothelioma. Conclusions: We find that "senescence scoring" accurately reports senescence signalling in a variety of situations where senescence would be expected to occur and highlights differential expression of damage associated and secretory senescence pathways in a context-dependent manner

    Role of pathogenic oral flora in postoperative pneumonia following brain surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-operative pulmonary infection often appears to result from aspiration of pathogens colonizing the oral cavity. It was hypothesized that impaired periodontal status and pathogenic oral bacteria significantly contribute to development of aspiration pneumonia following neurosurgical operations. Further, the prophylactic effects of a single dose preoperative cefazolin on the oral bacteria were investigated.</p> <p>Methods</p> <p>A matched cohort of 18 patients without postoperative lung complications was compared to 5 patients who developed pneumonia within 48 hours after brain surgery. Patients waiting for elective operation of a single brain tumor underwent dental examination and saliva collection before surgery. Bacteria from saliva cultures were isolated and periodontal disease was scored according to type and severity. Patients received 15 mg/kg cefazolin intravenously at the beginning of surgery. Serum, saliva and bronchial secretion were collected promptly after the operation. The minimal inhibitory concentrations of cefazolin regarding the isolated bacteria were determined. The actual antibiotic concentrations in serum, saliva and bronchial secretion were measured by capillary electrophoresis upon completion of surgery. Bacteria were isolated again from the sputum of postoperative pneumonia patients.</p> <p>Results</p> <p>The number and severity of coexisting periodontal diseases were significantly greater in patients with postoperative pneumonia in comparison to the control group (p = 0.031 and p = 0.002, respectively). The relative risk of developing postoperative pneumonia in high periodontal score patients was 3.5 greater than in patients who had low periodontal score (p < 0.0001). Cefazolin concentration in saliva and bronchial secretion remained below detectable levels in every patient.</p> <p>Conclusion</p> <p>Presence of multiple periodontal diseases and pathogenic bacteria in the saliva are important predisposing factors of postoperative aspiration pneumonia in patients after brain surgery. The low penetration rate of cefazolin into the saliva indicates that its prophylactic administration may not be sufficient to prevent postoperative aspiration pneumonia. Our study suggests that dental examination may be warranted in order to identify patients at high risk of developing postoperative respiratory infections.</p
    corecore