755 research outputs found

    International standards for fetal brain structures based on serial ultrasound measurements from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project.

    Get PDF
    OBJECTIVE: To create prescriptive growth standards for five fetal brain structures, measured by ultrasound, from healthy, well-nourished women, at low risk of impaired fetal growth and poor perinatal outcomes, taking part in the Fetal Growth Longitudinal Study (FGLS) of the INTERGROWTH-21st Project. METHODS: This was a complementary analysis of a large, population-based, multicentre, longitudinal study. We measured, in planes reconstructed from 3-dimensional (3D) ultrasound volumes of the fetal head at different time points in pregnancy, the size of the parieto-occipital fissure (POF), Sylvian fissure (SF), anterior horn of the lateral ventricle (AV), atrium of the posterior ventricle (PV) and cisterna magna (CM). The sample analysed was randomly selected from the overall FGLS population, ensuring an equal distribution amongst the eight diverse participating sites and of 3D ultrasound volumes across pregnancy (range: 15 - 36 weeks' gestation). Fractional polynomials were used to the construct standards. Growth and development of the infants were assessed at 1 and 2 years of age to confirm their adequacy for constructing international standards. RESULTS: From the entire FGLS cohort of 4321 women, 451 (10.4%) were randomly selected. After exclusions, 3D ultrasound volumes from 442 fetuses born without congenital malformations were used to create the charts. The fetal brain structures of interest were identified in 90% of cases. All structures showed increasing size with gestation and increasing variability for the POF, SF, PV and CM. The 3rd , 5th , 50th , 95th and 97th smoothed centile are presented. The 5th centile of POF and SF were 2.8 and 4.3 at 22 weeks and 4.2 and 9.4mm at 32 weeks respectively. The 95th centile of PV and CM were 8.5 and 7.4 at 22 weeks and 8.5 and 9.4mm at 32 weeks respectively. CONCLUSIONS: We have produced prescriptive size standards for fetal brain structures based on prospectively enrolled pregnancies at low risk of abnormal outcomes. We recommend these as international standards for the assessment of measurements obtained by ultrasound from fetal brain structures

    Spectral reflectance properties of iridescent pierid butterfly wings

    Get PDF
    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies’ photoreceptors

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses

    Ultrasound-based gestational-age estimation in late pregnancy.

    Get PDF
    OBJECTIVE: Accurate gestational-age (GA) estimation, preferably by ultrasound measurement of fetal crown-rump length before 14 weeks' gestation, is an important component of high-quality antenatal care. The objective of this study was to determine how GA can best be estimated by fetal ultrasound for women who present for the first time late in pregnancy with uncertain or unknown menstrual dates. METHODS: INTERGROWTH-21(st) was a large, prospective, multicenter, population-based project performed in eight geographically defined urban populations. One of its principal components, the Fetal Growth Longitudinal Study, aimed to develop international fetal growth standards. Each participant had their certain menstrual dates confirmed by first-trimester ultrasound examination. Fetal head circumference (HC), biparietal diameter (BPD), occipitofrontal diameter (OFD), abdominal circumference (AC) and femur length (FL) were measured every 5 weeks from 14 weeks' gestation until delivery. For each participant, a single, randomly selected ultrasound examination was used to explore all candidate biometric variables and permutations to build models to predict GA. Regression equations were ranked based upon minimization of the mean prediction error, goodness of fit and model complexity. An automated machine learning algorithm, the Genetic Algorithm, was adapted to evaluate > 64 000 potential polynomial equations as predictors. RESULTS: Of the 4607 eligible women, 4321 (94%) had a pregnancy without major complications and delivered a live singleton without congenital malformations. After other exclusions (missing measurements in GA window and outliers), the final sample comprised 4229 women. Two skeletal measures, HC and FL, produced the best GA prediction, given by the equation loge (GA) = 0.03243 × (loge (HC))(2) + 0.001644 × FL × loge (HC) + 3.813. When FL was not available, the best equation based on HC alone was loge (GA) = 0.05970 × (loge (HC))(2) + 0.000000006409 × (HC)(3) + 3.3258. The estimated uncertainty of GA prediction (half width 95% interval) was 6-7 days at 14 weeks' gestation, 12-14 days at 26 weeks' gestation and > 14 days in the third trimester. The addition of FL to the HC model led to improved prediction intervals compared with using HC alone, but no further improvement in prediction was afforded by adding AC, BPD or OFD. Equations that included other measurements (BPD, OFD and AC) did not perform better. CONCLUSIONS: Among women initiating antenatal care late in pregnancy, a single set of ultrasound measurements combining HC and FL in the second trimester can be used to estimate GA with reasonable accuracy. We recommend this tool for underserved populations but considerable efforts should be implemented to improve early initiation of antenatal care worldwide. © 2016 Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    Impacts of metal mining on river systems: a global assessment

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Data and materials availability: The Water and Planetary Health Analytics (WAPHA) global metal mines database is divided into four components. Publicly available data on (i) active and (ii) inactive metal mines are available from the US Geological Survey Mineral Resources Data System [https://mrdata.usgs.gov/mrds/ (31)], the BritPits database of the British Geological Survey [https://www.bgs.ac.uk/datasets/britpits/ (32)], and the S&P Global Market Intelligence database [https://www.spglobal.com/marketintelligence/en/campaigns/metals-mining (33)]. In addition, data for ~100,000 additional active and inactive mines obtained from academic and gray literature are stored in the WAPHA database [https://doi.org/10.5061/dryad.j3tx95xmg (29)]. Publicly available data relating to (iii) TSFs and (iv) TDFs are available from ICOLD/UNEP [https://books.google.co.uk/books?id=8W0hAQAAIAAJ (34)], the World Information Service on Energy [https://wise-uranium.org/mdaf.html (35)], the World Mine Tailings Failures and Global Tailings Portal databases [https://tailing.grida.no/ (36)]. Additional TSF/TDF data obtained from academic and gray literature are stored in the WAPHA database [https://doi.org/10.5061/dryad.j3tx95xmg (29)]. Modeling was implemented procedurally in MATLAB v9.9.0 (R2020b) (37) with the open source TopoToolbox MATLAB program for the analysis of digital elevation models (https://topotoolbox.wordpress.com). The modeling workflow is presented in fig. S8 with example code available in the WAPHA database [https://doi.org/10.5061/dryad.j3tx95xmg (29)]An estimated 23 million people live on floodplains affected by potentially dangerous concentrations of toxic waste derived from past and present metal mining activity. We analyzed the global dimensions of this hazard, particularly in regard to lead, zinc, copper, and arsenic, using a georeferenced global database detailing all known metal mining sites and intact and failed tailings storage facilities. We then used process-based and empirically tested modeling to produce a global assessment of metal mining contamination in river systems and the numbers of human populations and livestock exposed. Worldwide, metal mines affect 479,200 kilometers of river channels and 164,000 square kilometers of floodplains. The number of people exposed to contamination sourced from long-term discharge of mining waste into rivers is almost 50 times greater than the number directly affected by tailings dam failures.University of Lincol

    Measuring socio-demographic differences in volunteers with a value-based index: illustration in a mega event

    Get PDF
    The phenomenon of volunteering can be analysed as a consumer experience through the concept of value as a trade-off between benefits and costs. In event volunteering, both the expected value (pre-experienced) and the perceived value (post-experienced) of volunteering can be assessed. With this purpose, an online quantitative survey is conducted with a sample of 711 volunteers in a religious mega event, with questions related to five dimensions of their experience: efficiency, social value, play, spirituality and time spent. These five scales, properly tested are used for building a multidimensional index of both the expected and perceived value of the volunteer experience. ANOVAs test show significant differences on the index in both moments upon the socio-demographic profiles: negative expectations/experience balance by age, contrasted results by sex, and more experienced volunteers being more critical with the value experienced. Implications for event managers are proposed, in line with the motivation of volunteers

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    corecore