26 research outputs found
Management of intra-abdominal infections : recommendations by the WSES 2016 consensus conference
This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.Peer reviewe
Caspase-Dependent Inhibition of Mousepox Replication by gzmB
BACKGROUND: Ectromelia virus is a natural mouse pathogen, causing mousepox. The cytotoxic T (Tc) cell granule serine-protease, granzyme B, is important for its control, but the underlying mechanism is unknown. Using ex vivo virus immune Tc cells, we have previously shown that granzyme B is able to activate several independent pro-apoptotic pathways, including those mediated by Bid/Bak/Bax and caspases-3/-7, in target cells pulsed with Tc cell determinants. METHODS AND FINDINGS: Here we analysed the physiological relevance of those pro-apoptotic pathways in ectromelia infection, by incubating ectromelia-immune ex vivo Tc cells from granzyme A deficient (GzmB(+) Tc cells) or granzyme A and granzyme B deficient (GzmAxB(-/-) Tc cell) mice with ectromelia-infected target cells. We found that gzmB-induced apoptosis was totally blocked in ectromelia infected or peptide pulsed cells lacking caspases-3/-7. However ectromelia inhibited only partially apoptosis in cells deficient for Bid/Bak/Bax and not at all when both pathways were operative suggesting that the virus is able to interfere with apoptosis induced by gzmB in case not all pathways are activated. Importantly, inhibition of viral replication in vitro, as seen with wild type cells, was not affected by the lack of Bid/Bak/Bax but was significantly reduced in caspase-3/-7-deficient cells. Both caspase dependent processes were strictly dependent on gzmB, since Tc cells, lacking both gzms, neither induced apoptosis nor reduced viral titers. SIGNIFICANCE: Out findings present the first evidence on the biological importance of the independent gzmB-inducible pro-apoptotic pathways in a physiological relevant virus infection model
Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action
It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response
Mechanism of and Threshold Biomechanical Conditions for Falsetto Voice Onset
The sound source of a voice is produced by the self-excited oscillation of the vocal folds. In modal voice production, a drastic increase in transglottal pressure after vocal fold closure works as a driving force that develops self-excitation. Another type of vocal fold oscillation with less pronounced glottal closure observed in falsetto voice production has been accounted for by the mucosal wave theory. The classical theory assumes a quasi-steady flow, and the expected driving force onto the vocal folds under wavelike motion is derived from the Bernoulli effect. However, wavelike motion is not always observed during falsetto voice production. More importantly, the application of the quasi-steady assumption to a falsetto voice with a fundamental frequency of several hundred hertz is unsupported by experiments. These considerations suggested that the mechanism of falsetto voice onset may be essentially different from that explained by the mucosal wave theory. In this paper, an alternative mechanism is submitted that explains how self-excitation reminiscent of the falsetto voice could be produced independent of the glottal closure and wavelike motion. This new explanation is derived through analytical procedures by employing only general unsteady equations of motion for flow and solids. The analysis demonstrated that a convective acceleration of a flow induced by rapid wall movement functions as a negative damping force, leading to the self-excitation of the vocal folds. The critical subglottal pressure and volume flow are expressed as functions of vocal fold biomechanical properties, geometry, and voice fundamental frequency. The analytically derived conditions are qualitatively and quantitatively reasonable in view of reported measurement data of the thresholds required for falsetto voice onset. Understanding of the voice onset mechanism and the explicit mathematical descriptions of thresholds would be beneficial for the diagnosis and treatment of voice diseases and the development of artificial vocal folds
