35 research outputs found

    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview

    Get PDF
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Adenosine A2A receptors: localization and function

    Get PDF
    Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and A3), adenosine regulates several important physiological functions at both the central and peripheral levels. Therefore, ligands for the different adenosine receptors are attracting increasing attention as new potential drugs to be used in the treatment of several diseases. This chapter is aimed at providing an overview of adenosine metabolism, adenosine receptors localization and their signal transduction pathways. Particular attention will be paid to the biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged as promising new drugs for the treatment of Parkinson's disease. The interactions of A2A receptors with other nonadenosinergic receptors, and the effects of the pharmacological manipulation of A2A receptors on different body organs will be discussed, together with the usefulness of A2A receptor antagonists for the treatment of Parkinson's disease and the potential adverse effects of these drugs

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Protective role of P2Y(2) receptor against lung infection induced by pneumonia virus of mice

    Get PDF
    ATP released in the early inflammatory processes acts as a danger signal by binding to purinergic receptors expressed on immune cells. A major contribution of the P2Y2 receptor of ATP/UTP to dendritic cell function and Th2 lymphocyte recruitment during asthmatic airway inflammation was previously reported. We investigated here the involvement of P2Y2 receptor in lung inflammation initiated by pneumonia virus of mice infection. We demonstrated that P2Y2-/- mice display a severe increase in morbidity and mortality rate in response to the virus. Lower survival of P2Y2-/- mice was not correlated with excessive inflammation despite the higher level of neutrophil recruiters in their bronchoalveolar fluids. Interestingly, we observed reduced ATP level and lower numbers of dendritic cells, CD4+ T cells and CD8+ T cells in P2Y2-/- compared to P2Y2+/+ infected lungs. Lower level of IL-12 and higher level of IL-6 in bronchoalveolar fluid support an inhibition of Th1 response in P2Y2-/- infected mice. Quantification of DC recruiter expression revealed comparable IP-10 and MIP-3 levels but a reduced BRAK level in P2Y2-/- compared to P2Y2+/+ bronchoalveolar fluids. Higher morbidity and mortality of P2Y2-/- mice appear to result from defective dendritic cell and T cell infiltration that were correlated with higher virus titer. In conclusion, P2Y2 receptor previously described as a target in cystic fibrosis therapy and as a mediator of Th2 response in asthma, may also regulate Th1 response protecting mice against lung viral infection
    corecore