62 research outputs found

    Using voxels in the simulation of manufacturing processes

    Get PDF
    The present paper introduces the use of voxels embedded in an octree structure in order to numerically simulate manufacturing processes. In particular, micro electrical discharge machining (ÎŒEDM) is used here as a case study. The involved elements (tool and workpiece) are modelized in a volumetric manner using voxels and the process is simulated on a step-by step basis. Comparisons using the Hausdorff metric with experimental results are included and discussed

    Magnetoliposomes: envisioning new strategies for water decontamination

    Get PDF
    In this work, the inclusion of magnetic nanoparticles (MNPs) within phospholipid vesicles has been investigated as novel strategy for improving stability and reactivity of these nanoparticles and extending their potential use in the environmental field. Two phospholipids able to form liposomes characterized by different rigidity and stiffness, were used as potential carriers of MNPs. The magneto-responsive liposomes were investigated for their physicochemical and stability properties. In particular, the stability of the two systems was indirectly investigated evaluating the ability of the hybrid constructs to retain a fluorescent marker in their structure. Alterations in the permeability of the membranes were determined by the rate of the marker release from the liposomes, under both mechanical and thermal stress conditions

    Estimating the energy repartition in micro electrical discharge machining

    Get PDF
    This paper presents a new approach for the recording of the total quantity of energy exchanged during the micro electrical discharge machining (EDM) process. In particular, this approach allows for the estimation of the percentage of energy absorbed by the two electrodes (tool and workpiece) using a combination of theoretical models and experimental results, thanks to an advanced discharges measuring approach. An experimental campaign was executed on a Sarix SX200 micro-EDM machine with a tungsten carbide tool electrode. In particular, the process was analyzed for two different electrode shapes, a triangular and a rectangular based parallelepipeds, and two sets of machining parameters. After the execution of the experimental campaign it estimate the total amount of energy that occurred during the entire die sinking process. The energy effectively lost into the tool, into the workpiece and into the dielectric was estimated from the measurement of the volume of material actually removed both from the tool and from the workpiece. The preliminary results appears to fit those presented in the literature and the validity of several theoretical crater models was then assessed. The validation of the presented acquisition method could enable the use of information related to energy repartition in the simulation of the micro-EDM process.The reported research was partly funded by the Engineering and Physical Sciences Research Council (EPSRC) under the grant EP/J004901/1

    The COVID-19 Pandemic Sparked off a Large-Scale Outbreak of Carbapenem-Resistant Acinetobacter baumannii from the Endemic Strains at an Italian Hospital

    Get PDF
    Acinetobacter baumannii is a nosocomial pathogen that poses a serious threat due to the rise of incidence of multidrug-resistant (MDR) strains. During the COVID-19 pandemic, MDR A. baumannii clones have caused several outbreaks worldwide. Here, we describe a detailed investigation of an MDR A. baumannii outbreak that occurred at Policlinico San Matteo (Pavia, Italy). A total of 96 A. baumannii strains, isolated between January and July 2020 from 41 inpatients (both SARS-CoV-2 positive and negative) in different wards, were characterized by phenotypic and genomic analyses combining Illumina and Nanopore sequencing. Antibiotic susceptibility testing revealed that all isolates were resistant to carbapenems, and the sequence analysis attributed this to the carbapenemase gene blaOXA-23. Virulence factor screening unveiled that all strains carried determinants for biofilm formation, while plasmid analysis revealed the presence of two plasmids, one of which was ~100 kbp long and encoded a phage sequence. A core genome-based phylogeny was inferred to integrate outbreak strain genomes with background genomes from public databases and the local surveillance program. All strains belonged to the globally disseminated sequence type 2 (ST2) clone and were mainly divided into two clades. Isolates from the outbreak clustered with surveillance isolates from 2019, suggesting that the outbreak was caused by two strains that were already circulating in the hospital before the start of the pandemic. The intensive spread of A. baumannii in the hospital was enhanced by the extreme emergency situation of the first COVID-19 pandemic wave that resulted in reduced attention to infection prevention and control practices. IMPORTANCE: The COVID-19 pandemic, especially during the first wave, posed a great challenge to the hospital management and generally promoted nosocomial pathogen dissemination. MDR A. baumannii can easily spread and persist for a long time on surfaces, causing outbreaks in health care settings. Infection prevention and control practices, epidemiological surveillance, and microbiological screening are fundamental in order to control such outbreaks. Here, we sequenced the genomes of 96 isolates from an outbreak of MDR A. baumannii strains using both short- and long-read technology in order to reconstruct the outbreak events in fine detail. The sequence data demonstrated that two endemic clones of MDR A. baumannii were the source of this large hospital outbreak during the first COVID-19 pandemic wave, confirming the effect of COVID-19 emergency disrupting the protection provided by the use of the standard prevention procedures

    Foodborne Salmonellosis in Italy: Characterization of Salmonella enterica Serovar Typhimurium and Monophasic Variant 4,[5],12:i- Isolated from Salami and Human Patients.

    Get PDF
    Salmonella enterica serovar Typhimurium (STm) and its monophasic variant 4,[5],12:i:- (VMSTm) have been responsible for an increased number of foodborne infections in humans in Europe in recent years. The aim of this study was to investigate the origin of three foodborne salmonellosis outbreaks that occurred in Pavia Province (Lombardy region, northern Italy) in 2010. Phenotypic and genetic characteristics of the STm and VMSTm isolates from patients and from food that were recovered in the framework of the three outbreaks were evaluated through serotyping, phage typing, antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multiple-locus variable-number tandem repeat analysis (MLVA). Salami from three artisan producers, which had all purchased meat from the same slaughterhouse, was the food source of infection in outbreak I. STm isolates were recovered from salami and patients with symptoms of gastroenteritis. These isolates had the same PFGE type and the same rare MLVA profile (3-18-9-NA-211). The same molecular profiles were found in an STm isolate from a salami, which likely was the source of another family outbreak (II). A VMSTm strain with common phenotypic and molecular profiles was isolated from three hospitalized patients and identified as the cause of another putative outbreak (III). During the following 3 years (2011 through 2013), 360 salami produced in Pavia Province were monitored for the presence of S. enterica . In 2011, no STm and VMSTm isolates were recovered from 159 salami tested. During 2012 and 2013, 13.9% of 201 tested salami harbored S. enterica , and half of the isolates were VMSTm, mainly in salami from those artisan producers involved in the previous outbreaks. These isolates were genetically variable, especially in terms of MLVA profiles. The data collected suggest that from 2012, VMSTm has replaced STm in the environments of the salami producers monitored in this study, and these data confirm the dominance of this emergent serovar along the pork supply chain

    Estimating the exchanged energy distribution in micro-EDM

    Get PDF
    This paper presents a new approach for the recording of the total quantity of energy exchanged during the micro Electro Discharge Machining (EDM) process. In particular, this approach allows for the estimation of the percentage of energy absorbed by the two electrodes (tool and workpiece) using a combination of theoretical models and experimental results, thanks to an advanced discharges measuring approach. The validity of several theoretical crater models was then assessed. Using this approach, the process was analysed for two electrode shapes and two sets of machining parameters. The preliminary results appears to fit those presented in the literature

    Genome of Superficieibacter maynardsmithii, a novel, antibiotic susceptible representative of Enterobacteriaceae

    Get PDF
    During a citywide microbiological screening project in Pavia (Italy) a bacterial strain isolated from the surface of an Automated Teller Machine was classified as a Klebsiella sp. by MALDI-TOF spectrometry, and shown to be susceptible to the most antimicrobial classes by phenotypic testing. After Illumina genome sequencing and subsequent assembly, a high-quality draft genome was obtained (size = 5,051,593 bp, N50=615,571 bp, largest contig = 1,328,029 bp, N_contig = 17, GC content = 51.58%, coverage= 141.42), absence of antimicrobial resistance genes was confirmed, but the strain resulted to be highly divergent from all Klebsiella, and more related to other Enterobacteriaceae. The higher values of 16S rRNA identity were with members of the genera Citrobacter, Salmonella, and "Superficieibacter." An ortholog-based phylogenomic analysis indicated a sister group relationship with "Superficieibacter electus," in a distinct Glade from other members of the Enterobacteriaceae family. In order to evaluate whether the novel genome represents a new species of "Superficiebacter," average nucleotide identity (ANI) and Hadamard analysis were performed on a dataset of 78 Enterobacteriaceae. The novel genome showed an ANI of 87.51% with S. electus, which compared on identity values between other members of the family, clearly indicates that the genome represents a new species within the genus "Superficieibacter." We propose for the new species the name "Superficieibacter maynardsmithii."Peer reviewe

    DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies

    Get PDF
    Purpose: Chromatinopathies include more than 50 disorders caused by disease-causing variants of various components of chromatin structure and function. Many of these disorders exhibit unique genome-wide DNA methylation profiles, known as episignatures. In this study, the methylation profile of a large cohort of individuals with chromatinopathies was analyzed for episignature detection. Methods: DNA methylation data was generated on extracted blood samples from 129 affected individuals with the Illumina Infinium EPIC arrays and analyzed using an established bioinformatic pipeline. Results: The DNA methylation profiles matched and confirmed the sequence findings in both the discovery and validation cohorts. Twenty-five affected individuals carrying a variant of uncertain significance, did not show a methylation profile matching any of the known episignatures. Three additional variant of uncertain significance cases with an identified KDM6A variant were re-classified as likely pathogenic (n = 2) or re-assigned as Wolf-Hirschhorn syndrome (n = 1). Thirty of the 33 Next Generation Sequencing negative cases did not match a defined episignature while three matched Kabuki syndrome, Rubinstein-Taybi syndrome and BAFopathy respectively. Conclusion: With the expanding clinical utility of the EpiSign assay, DNA methylation analysis should be considered part of the testing cascade for individuals presenting with clinical features of Mendelian chromatinopathy disorders

    Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov.

    Get PDF
    Klebsiella oxytoca causes opportunistic human infections and post-antibiotic haemorrhagic diarrhea. This Enterobacteriaceae species is genetically heterogeneous and is currently subdivided into seven phylogroups (Ko1 to Ko4 and Ko6 to Ko8). Here we investigated the taxonomic status of phylogroups Ko3 and Ko4. Genomic sequence-based phylogenetic analyses demonstrate that Ko3 and Ko4 formed well-defined sequence clusters related to, but distinct from, Klebsiella michiganensis (Ko1), K. oxytoca (Ko2), K. huaxiensis (Ko8), and K. grimontii (Ko6). The average nucleotide identity (ANI) of Ko3 and Ko4 were 90.7% with K. huaxiensis and 95.5% with K. grimontii, respectively. In addition, three strains of K. huaxiensis, a species so far described based on a single strain from a urinary tract infection patient in China, were isolated from cattle and human feces. Biochemical and MALDI-ToF mass spectrometry analysis allowed differentiating Ko3, Ko4, and Ko8 from the other K. oxytoca species. Based on these results, we propose the names Klebsiella spallanzanii for the Ko3 phylogroup, with SPARK_775_C1T (CIP 111695T and DSM 109531T) as type strain, and Klebsiella pasteurii for Ko4, with SPARK_836_C1T (CIP 111696T and DSM 109530T) as type strain. Strains of K. spallanzanii were isolated from human urine, cow feces, and farm surfaces, while strains of K. pasteurii were found in fecal carriage from humans, cows, and turtles.Peer reviewe
    • 

    corecore