263 research outputs found

    The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit

    Get PDF
    Exceptional patterns in the diurnal course of ozone mixing ratio at a mountain top site (998 m a.s.l.) were observed during a field experiment (September 2005). They manifested themselves as strong and sudden decreases of ozone mixing ratio with a subsequent return to previous levels. The evaluation of corresponding long-term time series (2000–2005) revealed that such events occur mainly during summer, and affect the mountain top site on about 18% of the summer days. Combining (a) surface layer measurements at mountain summit and at the foot of the mountain, (b) in-situ (tethered balloon) and remote sensing (SODAR-RASS) measurements within the atmospheric boundary layer, the origin of these events of sudden ozone decrease could be attributed to free convection. The free convection was triggered by a rather frequently occurring wind speed minimum around the location of the mountain

    Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems

    Get PDF
    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined

    Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    Get PDF
    International audienceWithin the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s?1, and a corresponding O3 flux of ?11 nmol m?2 s?1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s?1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain forest. The mean ozone deposition to the pasture was found to be systematically lower than that to the forest by 30% in the wet and 18% in the dry season

    Phase Diagram of a Superconducting and Antiferromagnetic System with SO(5) Symmetry

    Full text link
    Temperature vs. chemical-potential phase diagrams of an SO(5) model for high-(T_c) cuprates are calculated by Monte Carlo simulation. There is a bicritical point where the second-order antiferromagnetism (AF) and superconductivity transition lines merge tangentially into a first-order line, and the SO(5) symmetry is achieved. In an external magnetic field, the AF ordering is first order in the region where the first-order melting line of flux lattice joins in. There is a tricritical point on the AF transition line from which the AF ordering becomes second order.Comment: 6 pages, 5 postscript figures, RevTe

    The enigmatic B[e]-star Henize 2-90: The non-spherical mass loss history from an analysis of forbidden lines

    Full text link
    (abridged) We study the optical spectrum of the exciting B[e] star Hen 2-90 based on new high-resolution observations that cover the innermost 2". Our investigation is splitted in two parts, a qualitative study of the presence of the numerous emission lines and the classification of their line profiles which indicate a circumstellar environment of high complexity, and a quantitative analysis of numerous forbidden lines, e.g. [OI], [OII], [OIII], [SII], [SIII], [ArIII], [ClII], [ClIII] and [NII]. We find a correlation between the different ionization states of the elements and the velocities derived from the line profiles: the highly ionized atoms have the highest outflow velocity while the neutral lines have the lowest outflow velocity. The recent HST image of Hen 2-90 reveals a bipolar, highly ionized region, a neutral disk-like structure and an intermediate region of moderate ionization. It seems that a non-spherical stellar wind model is a good option to explain the ionization and spatial distribution of the circumstellar material. We modelled the forbidden lines under the assumption of a non-spherically symmetric wind based on the HST image. We find that in order to fit the observed line luminosities, the mass flux, surface temperature, and terminal wind velocities need to be latitude dependent, which might be explained in terms of a rapidly rotating central star. A rotation speed of 75-80 % of the critical velocity has been derived. The total mass loss rate of the star was determined to be of order 3 10^{-5} M_sun/yr. Such a wind scenario and the fact that compared to solar abundances C, O, and N seem to be underabundant while S, Ar and Cl have solar abundances, might be explained in terms of a rapidly rotating post-AGB star.Comment: 16 pages, 13 figures, accepted for publication in A&A. Table 4 is included at the end of the paper. This table will only be available in the online version of the paper and will not appear in the printed versio

    Surface and Boundary Layer Exchanges of Volatile Organic Compounds, Nitrogen Oxides and Ozone During the GABRIEL Campaign

    Get PDF
    Abstract. We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.JRC.H.2-Climate chang

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T∌1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t∌8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
    • 

    corecore