1,231 research outputs found
Ratio control in a cascade model of cell differentiation
We propose a kind of reaction-diffusion equations for cell differentiation,
which exhibits the Turing instability. If the diffusivity of some variables is
set to be infinity, we get coupled competitive reaction-diffusion equations
with a global feedback term. The size ratio of each cell type is controlled by
a system parameter in the model. Finally, we extend the model to a cascade
model of cell differentiation. A hierarchical spatial structure appears as a
result of the cell differentiation. The size ratio of each cell type is also
controlled by the system parameter.Comment: 13 pages, 7 figure
Morphogen Transport in Epithelia
We present a general theoretical framework to discuss mechanisms of morphogen
transport and gradient formation in a cell layer. Trafficking events on the
cellular scale lead to transport on larger scales. We discuss in particular the
case of transcytosis where morphogens undergo repeated rounds of
internalization into cells and recycling. Based on a description on the
cellular scale, we derive effective nonlinear transport equations in one and
two dimensions which are valid on larger scales. We derive analytic expressions
for the concentration dependence of the effective diffusion coefficient and the
effective degradation rate. We discuss the effects of a directional bias on
morphogen transport and those of the coupling of the morphogen and receptor
kinetics. Furthermore, we discuss general properties of cellular transport
processes such as the robustness of gradients and relate our results to recent
experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly
Drosophila
Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers
The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein
model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer
W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were
determined in simulations with initial random noise perturbations to the uniform state for W< l/2
and D l or lower. We show that the geometric constraints of the reaction domain may result in the
formation of helical Turing patterns with parameters that give stripes (b ¼ 0.2) or spots (b ¼ 0.37) in
two dimensions. For b ¼ 0.2, the helices were composed of lamellae and defects were likely as the
diameter of the cylinder increased. With b ¼ 0.37, the helices consisted of semi-cylinders and
the orientation of stripes on the outer surface (and hence winding number) increased with increasing
diameter until a new stripe appeared
Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements?
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions
Spatial and spatio-temporal patterns in a cell-haptotaxis model
We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyse the steady state problem for specific boundary conditions and show the existence of spatially hetero-geneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyse the model in a parameter domain wherein it exhibits a singular dispersion relation
Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle
TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions
This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies
Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis
In his seminal 1952 paper, ‘The Chemical Basis of Morphogenesis’, Alan Turing lays down a milestone in the application of theoretical approaches to understand complex biological processes. His deceptively simple demonstration that a system of reacting and diffusing chemicals could, under certain conditions, generate spatial patterning out of homogeneity provided an elegant solution to the problem of how one of nature's most intricate events occurs: the emergence of structure and form in the developing embryo. The molecular revolution that has taken place during the six decades following this landmark publication has now placed this generation of theoreticians and biologists in an excellent position to rigorously test the theory and, encouragingly, a number of systems have emerged that appear to conform to some of Turing's fundamental ideas. In this paper, we describe the history and more recent integration between experiment and theory in one of the key models for understanding pattern formation: the emergence of feathers and hair in the skins of birds and mammals
Converting genetic network oscillations into somite spatial pattern
In most vertebrate species, the body axis is generated by the formation of
repeated transient structures called somites. This spatial periodicity in
somitogenesis has been related to the temporally sustained oscillations in
certain mRNAs and their associated gene products in the cells forming the
presomatic mesoderm. The mechanism underlying these oscillations have been
identified as due to the delays involved in the synthesis of mRNA and
translation into protein molecules [J. Lewis, Current Biol. {\bf 13}, 1398
(2003)]. In addition, in the zebrafish embryo intercellular Notch signalling
couples these oscillators and a longitudinal positional information signal in
the form of an Fgf8 gradient exists that could be used to transform these
coupled temporal oscillations into the observed spatial periodicity of somites.
Here we consider a simple model based on this known biology and study its
consequences for somitogenesis. Comparison is made with the known properties of
somite formation in the zebrafish embryo . We also study the effects of
localized Fgf8 perturbations on somite patterning.Comment: 7 pages, 7 figure
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
- …