225 research outputs found

    Sensory testing in leprosy:Comparison of ballpoint pen and monofilaments

    Get PDF
    The 10 g monofilament has been replaced by the ballpoint pen in routine sensory testing of nerves in leprosy control in Ethiopia. Results of sensory testing between the ballpoint pen and different monofilaments on hands and feet were compared. Ballpoint pen underdiagnosis of loss of sensation was defined to occur when the pen was felt and the monofilament was not. Differences were evaluated both for individual test points (test point level) and for the test points of extremities collectively (extremity level). An extremity (either a hand or a foot) was defined as having sensory nerve function impairment (SNFI) if a supplying nerve had SNFI, which was the case when sensation was absent in two or more test points in the area supplied by that nerve. At test point level, the percentages with ballpoint pen underdiagnosis relative to the 2, 10, 20 and 50 g monofilaments were 40, 21, 9 and 7%, respectively, in the hands, and 47, 30, 15 and 7% in the feet. Ballpoint pen underdiagnosis percentages of SNFI at extremity level were 32, 18, 8 and 9% in the hands, and 37, 26, 14 and 6% in the feet. The risk of ballpoint pen underdiagnosis appears to be higher in extremities without visible damage. In conclusion, substantial levels of underdiagnosis of sensory loss with the ballpoint pen were observed. However, the consequences for the prognosis of treatment with corticosteroids in patients with the more subtle sensation loss noted here need to be established. Development and testing of guidelines is a prerequisite for the use of the ballpoint pen

    The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development

    Get PDF
    The development of genetic competence in the Gram-positive eubacterium Bacillus subtilis is a complex postexponential process. Here we describe a new bicistronic operon, bdbDC, required for competence development, which was identified by the B. subtilis Systematic Gene Function Analysis program. Inactivation of either the bdbC or bdbD genes of this operon results in the loss of transformability without affecting recombination or the synthesis of ComK, the competence transcription factor. BdbC and BdbD are orthologs of enzymes known to be involved in extracytoplasmic disulfide bond formation. Consistent with this, BdbC and BdbD are needed for the secretion of theEscherichia coli disulfide bond-containing alkaline phosphatase, PhoA, by B. subtilis. Similarly, the amount of the disulfide bond-containing competence protein ComGC is severely reduced in bdbC or bdbD mutants. In contrast, the amounts of the competence proteins ComGA and ComEA remain unaffected by bdbDC mutations. Taken together, these observations imply that in the absence of either BdbC or BdbD, ComGC is unstable and that BdbC and BdbD catalyze the formation of disulfide bonds that are essential for the DNA binding and uptake machinery

    Temporary diverting stoma in therapy-refractory luminal colonic Crohn's disease:an alternative to immediate colorectal resection?

    Get PDF
    AimCreation of a diverting stoma in patients with Crohn's disease (CD) can counteract luminal inflammation. The clinical utility of a diverting stoma with the prospect of restoration of gastrointestinal continuity warrants further investigation. The aim of this work was to evaluate the long-term effects of creation of a diverting stoma on the disease course in patients with luminal colonic CD.MethodIn this retrospective, multicentre cohort study we investigated the disease course of patients who received a diverting stoma in the biological era. Clinical characteristics, medication use and surgical course were assessed at the time of creation of the diverting stoma and during follow-up. The primary outcome was the rate of successful and lasting reestablishment of gastrointestinal continuity.ResultsThirty six patients with refractory luminal CD from four institutions underwent creation of a diverting stoma. Of the overall cohort, 20 (56%) patients had their gastrointestinal continuity reestablished after initial stoma creation and 14 (39%) who had their stoma reversed remained stoma-free during a median of 3.3 years follow-up (interquartile range 2.1–6.1 years). Absence of stoma reversal was associated with the presence of proctitis (p = 0.02). Colorectal resection after creation of a diverting stoma was performed in 28 (78%) patients, with 7 (19%) having a less extensive resection and 6 (17%) having a more extensive resection compared with the surgical plan before stoma creation.ConclusionA diverting stoma could potentially be an alternative to immediate definitive stoma placement in specific populations consisting of patients with luminal colonic CD, especially in the absence of proctitis

    A Family of Water Immiscible, Dipolar Aprotic, Diamide Solvents from Succinic Acid

    Get PDF
    Three dipolar aprotic solvents were designed to possess high dipolarity and low toxicity: N , N , N ', N '-tetrabutylsuccindiamide (TBSA), N , N '-diethyl- N , N '-dibutylsuccindiamide (EBSA), N , N '-dimethyl- N , N '-dibutylsuccindiamide (MBSA). They were synthesized catalytically using a K60 silica catalyst in a solventless system. Their water-immiscibility stands out as an unusual and useful property for dipolar aprotic solvents. They were tested in a model Heck reaction, metal-organic framework syntheses, and a selection of polymer solubility experiments where their performances were found to be comparable to traditional solvents. Furthermore, MBSA was found to be suitable for the production of an industrially-relevant membrane from polyethersulphone. An integrated approach involving in silico analysis based on available experimental information, prediction model outcomes and read across data, as well as a panel of in vitro reporter gene assays covering a broad range of toxicological endpoints was used to assess toxicity. These in silico and in vitro tests suggested no alarming indications of toxicity in the new solvents

    Use of Short Tandem Repeat Sequences to Study Mycobacterium leprae in Leprosy Patients in Malawi and India

    Get PDF
    Molecular typing has provided an important tool for studies of many pathogens. Such methods could be particularly useful in studies of leprosy, given the many outstanding questions about the pathogenesis and epidemiology of this disease. The approach is particularly difficult with leprosy, however, because of the genetic homogeneity of M. leprae and our inability to culture it. This paper describes molecular epidemiological studies carried out on leprosy patients in Malawi and in India, using short tandem repeat sequences (STRS) as markers of M. leprae strains. It reveals evidence for continuous changes in these markers within individual patients over time, and for selection of different STRS-defined strains between different tissues (skin and nerve) in the same patient. Comparisons between patients collected under different circumstances reveal the uses and limitations of the approach—STRS analysis may in some circumstances provide a means to trace short transmission chains, but it does not provide a robust tool for distinguishing between relapse and reinfection. This encourages further work to identify genetic markers with different stability characteristics for incorporation into epidemiological studies of leprosy

    A review of mineral carbonation technologies to sequester CO2

    Get PDF

    Laboratory study on the mobility of major species in fly ash–brine co-disposal systems: up-flow percolation test

    Get PDF
    Apart from the generation of fly ash, brine (hyper-saline wastewater) is also a waste material generated in South African power stations as a result of water re-use. These waste materials contain major species such as Al, Si, Na, K, Ca, Mg, Cl and SO4. The co-disposal of fly ash and brine has been practiced by some power stations in South Africa with the aim of utilizing the fly ash to capture the salts in brine. The effect of the chemical interaction of the species contained in both fly ash and brine, when co-disposed, on the mobility of species in the fly ash–brine systems is the focus of this study. The up-flow percolation test was employed to determine the mobility of some major species in the fly ash–brine systems. The results of the analysed eluates from the up-flow percolation tests revealed that some species such as Al, Ca and Na were leached from the fly ash into the brine solution while some species such as Mg, Cl and SO4 were removed to some extent from the brine solution during the interaction with fly ash. The pH of the up-flow percolation systems was observed to play a significant role on the mobility of major species from the fly ash–brine systems. The study showed that some major species such as Mg, Cl and SO4 could be removed from brine solution using fly ash when certain amount of brine percolates through the ash.Web of Scienc

    The Carboxy-Terminal Domain of Dictyostelium C-Module-Binding Factor Is an Independent Gene Regulatory Entity

    Get PDF
    The C-module-binding factor (CbfA) is a multidomain protein that belongs to the family of jumonji-type (JmjC) transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF) motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD). An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo
    corecore