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Abstract  

Apart from the generation of fly ash, brine (hyper-saline wastewater) is also a waste material 

generated in South African power stations as a result of water re-use. These waste materials 

contain major species such as Al, Si, Na, K, Ca, Mg, Cl and SO4. The co-disposal of fly ash and 

brine has been practiced by some power stations in South Africa with the aim of utilizing the fly 

ash to capture the salts in brine. The effect of the chemical interaction of the species contained 

in both fly ash and brine, when co-disposed, on the mobility of species in the fly ash–brine 

systems is the focus of this study. The up-flow percolation test was employed to determine 

the mobility of some major species in the fly ash–brine systems. The results of the analysed 

eluates from the up-flow percolation tests revealed that some species such as Al, Ca and Na 

were leached from the fly ash into the brine solution while some species such as Mg, Cl and 

SO4 were removed to some extent from the brine solution during the interaction with fly ash. 

The pH of the up-flow percolation systems was observed to play a significant role on the 

mobility of major species from the fly ash–brine systems. The study showed that some major 

species such as Mg, Cl and SO4 could be removed from brine solution using fly ash when 

certain amount of brine percolates through the ash. 

 

1 Introduction 

The combustion of coal for power generation is on the increase due to the increase in 

demand for electricity globally. Huge amounts of fly ash are produced as a result of the 

increase in coal combustion. According to US Coal Combustion Product Production & Use 

Survey Report, US power plants produced about 60 million tons of fly ash in 2011, out of 

which nearly 39 % was beneficially used (ACAA 2011). South African power utilities 

generate significant quantities (about 40 Mt) of fly ash annually of which the power stations 

operated by ESKOM South Africa generate 25 Mt of the fly ash annually (ESKOM Report 

2013). Out of the fly ash generate in South Africa per annum, less than 10 % is beneficially 

utilized. The fact remains that, despite its beneficial use for agricultural purposes, waste 

stabilization, additive to cement, road construction among others (Iyer and Scott 2001; 

Kumpiene et al. 2006; Foner et al. 1999), significant amounts of fly ash are being disposed 

in ash dump. Fly ash contains major and minor species such as Ca, Na, Mg, K, SO4, Cl, Fe, 

As, Pb, Cu, Cr, Mo, Mn, etc., and these species could leach out in significant quantities from 

fly ash when in contact with aqueous solution (Ilic et al. 2003; Baba and Kaya 2004; 
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Polettini and Pomi 2004; Adriano et al. 1980). The disposal of fly ash has been a major 

concern to coal-fired power stations due to the possible release of contaminants to the 

surrounding soils, surface and groundwater. Apart from the fly ash generated in the power 

stations in South Africa, brine (a hyper-saline wastewater), is also generated in significant 

quantities in water treatment circuits. Brine contains some major and trace species such as Na, 

Mg, K, SO4, Cl, As, Pb, Cu, Se and Cr, in significant quantities. The disposal of brine is 

regulated due to its chemical composition thereby causing some power stations to co-dispose fly 

ash and brine with the aim of using fly ash to capture the species in brine. The leaching 

behaviour of major and minor species from coal fly ash and municipal solid waste incineration 

ash has been widely studied (Gitari et al. 2009; Meima and Comans 1999; Hyks et al. 2009) 

in order to assess the environmental implications of their utilization and disposal. Despite 

several studies on the release of species from fly ash when in contact with water and acid 

mine drainage (Baba and Kaya 2004; Polettini and Pomi 2004; Gitari et al. 2006), 

adequate attention has not been given to understanding the mobility of some species 

when fly ash is in contact with brine solution. This study is aimed at understanding the 

chemical interactions and mobility of major species when fly ash and brine are co-

disposed. The up-flow percolation test was employed to simulate, to some extent, a co- 

disposal scenario where fly ash and brine are mixed to form a slurry after which brine 

solution is percolated through the fly ash–brine system on a continuous basis. This 

approach enables the evaluation of the temporal evolution of pH and the major species over 

a given period of time. 

 

2 Materials and Method 

2.1 Fly Ash and Brine 

Fresh fly ash samples were collected from two South African coal-fired power utilities. The 

power utilities were coded as SC and TC. Fresh fly ash from SC power station was 

collected directly from the hoppers while the fly ash from TC was collected from the conveyor 

belt taking the ash to the ash dump. The TC fly ash used in this study was preconditioned 

with about 16 % brine solution to suppress dust before the ash was sampled (Fatoba et al. 

2011). There was no access to the fresh fly ash directly from the hopper because of the 

regulations of the power station. The fly ash samples were stored in sealed plastic containers. 

The plastic bags were filled to the top to exclude as much air as possible and then sealed up. 

The plastic bags containing the fly ash samples were stored in a dark cool cupboard far away 

from sources of heat, out of direct sunlight and away from fluctuating temperature. 

 

The brine sample used in this study was collected from the highly saline retentate stream of 

the reverse osmosis desalination plant at TC power station. The choice of the brine sample 

from TC power station was as a result of the higher concentration of the major elements 

compared to the brine generated at SC power station. The brine sample was stored in plastic 

containers, tightly closed and stored in the refrigerator at 4 °C. 

 

2.2 Up-flow Percolation Test 

The up-flow percolation test was carried out according to European standard method 

prEN14405 (CEN 2003) (details in Fatoba 2010). Columns of height 30 cm and internal 
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diameter 5 cm were designed for the up-flow percolation test. The column, including top and 

bottom sections, and filters were rinsed with 1 M nitric acid and de-mineralized water 

consecutively. The column was packed with the fly ash sample to the height of 25 ±5 cm and 

then weighed to determine the weight of the fly ash in the column (Fig. 1). The column was 

saturated with brine using a peristaltic pump. The saturated fly ash was left standing for a 

period of 3 days in order to equilibrate the systems (CEN 2003). After the equilibration 

period, fresh brine was continuously pumped into the column using a peristaltic pump 

pumping at a flow rate of 12 mL/h. The outlet hose was connected to the collection bottle and 

samples were taken at different times for analyses over a period of time until a cumulative 

L/S 80 was attained. At each leachate collection, time and volume of the eluate fraction 

was recorded in order to calculate the liquid/solid ratio and other necessary calculations 

at the end of the experiment.  The  pH  and  EC  of  the  eluate  were measured 

immediately after the eluates were taken. Samples were thereafter preserved with dilute 

HNO3 for analysis of metals by inductively coupled-mass spectrometry for major elements 

and un-acidified samples diluted accordingly for SO4
2− and Cl− analysis by ion 

chromatography. Samples were refrigerated at 4 °C until analysis. The up-flow percolation 

tests were carried out in duplicate. 

 

 
 

3 Results and Discussion 

3.1 Major Elements in Fly Ash 

The major elemental composition of the fresh fly ashes from SC and TC power stations 

showed that the ashes contain high concentrations of Al, Si, Ca, Mg and S (SO4) (Table 1). 

The comparison of the fly ashes showed that the concentrations of the species in the fly 

ashes vary. For instance, the concentration of Ca and Mg in SC fly ash was found to be higher 

than their concentration  in  TC  fly  ash.  The  variation  in  the concentrations of Ca and Mg 

in the fly ashes could be due to the different types of coal burnt by the different power 
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stations. The concentration and the dissolution of the oxides of Ca and Mg in the fly ash have 

significant effect on the pH of the fly ash system. This effect was noticed in the pH of the two 

fly ash systems as the pH of SC fly ash, with higher concentration of Ca and Mg, was slightly 

higher than that of TC fly ash (Fig. 2). The higher concentration of S and Cl in the TC fly ash 

compared to their concentration in SC fly ash could be attributed to the pre-conditioning of 

the TC fly ash with brine solution before the sample was taken. 

 

3.2 pH and EC 

The pH and EC of SC and TC fly ash–brine interactions in the up-flow percolation test are 

shown in Fig. 2. The pH of the unreacted brine (UB) was ≈8. After the interaction of the 

brine solution with the fly ashes, the pH of the fly ash–brine systems increased significantly 

to values >13 and >12 in SC and TC systems, respectively (Fig. 2) at the beginning of the 

experiments except for TC fly ash–brine system at L/S 0.1 where the pH value at the 

beginning of the experiment was almost the same as the pH of the UB. The high pH values 

observed in the leachates of the up-flow percolation systems during the first few bed volumes of 

flow could be attributed to the dissolution and hydrolysis of alkalinity-contributing oxides 

such as CaO on the surface of the fly ash particles during the 3-day equilibration period 

(Gitari et al. 2009; Iwashita et al. 2005; Reardon et al. 1995). After the initial increase, the 

pH of the systems (Fig. 2) gradually decreased over several bed volumes of flow. The gradual 

decrease in the pH of the systems after the maximum pH was reached at L/S 0.5 could 

be due to the slow release and continuous flushing out of the dissolved alkalinity- 

contributing components as a result of the low flow rate (12 mL/h) applied in the systems. 
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After the 3-day equilibration period, the EC of TC systems (Fig. 2 (TC2)) was initially 

considerably lower (5.6 mS/cm) than the EC of the unreacted brine solutions (UB) at the 

beginning of the test. Thereafter, the EC of TC systems increased rapidly to 13.23 mS/cm at 

L/S 0.2 after which a gradual and steady increase was observed until the end of the test 

except at L/S 35 where a slight decrease in the EC values of the fly ash–brine systems 

were observed. On the other hand, the EC of SC systems (Fig. 2 (SC2)) increased from ≈15 

mS/cm to the maximum of between 30–35 mS/cm at the beginning of the percolation test 

(after the equilibration) after which a gradual decrease from 35 to 15 mS/cm in the EC 

trends was observed for the fly ash–brine systems. The low EC values observed in TC 

systems at the beginning of the test could be attributed to the removal of some major species 

such as Na, Cl and SO4 from the fly ash–brine systems upon the initial contact of the fly ash 

with brine which was confirmed by the analysis of the eluate. The initial removal observed 

could be as a result of transient precipitation of some elements or formation of secondary 

mineral phases due to the super-saturation of these species in the systems. The rapid 

increase observed in the EC thereafter could be attributed to the dissolution of the transient 

phases or the dissolution of major components from the matrix of the fly ash that were 

released over time as the pH decreased. In contrast to the TC systems where the EC 

increased steadily, the EC of SC systems decreased steadily from about 35 to 15 mS/cm. The 

high EC observed at the beginning of the test, in the case of the SC system (Fig. 2 (SC2)), 

could be accounted for by the dissolution of highly soluble components of the fly ash 

during the 3-day equilibration period. The gradual decrease in the EC as observed in SC 
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system could indicate the steady flushing out of the dissolved species from the ash or the 

precipitation of some of the dissolved species due to super-saturation promoted by 

continuous and gradual flow of fresh brine solution in the systems. The almost stable EC 

observed at the end of the tests (Fig. 2) could be attributed to the steady and continuous 

dissolution of components locked up in the aluminosilicate matrix that are released over 

time. 

 

3.3 Major Elements in the Fly Ash–Brine Leachates 

The concentration of Al in the leachate samples collected from SC up-flow percolation 

systems (Fig. 3 (SC3)) was between 1 and 2 mg/L after the equilibration whereas the 

concentration of Al in the unreacted brine solutions at the beginning of the up-flow 

percolation tests was almost zero. This indicates that Al was released from fly ash upon 

equilibration with brine. The concentration of Al in SC leachate (Fig. 3 (SC3)) thereafter 

reduced to a minimum at L/S 1 and 2 whereafter an increase to about 4 mg/L was observed 

at L/S 10 after which the concentration of Al gradually decreased in the systems for the 

remaining L/S ratio. The release of Al in leachates samples of TC systems (Fig. 3 (TC3)) was 

higher (about 18 mg/L) thus more Al was released from the TC fly ash after equilibration at 

the beginning of the test. After the increase observed during equilibration, a gradual decrease 

in Al concentration was observed in TC leachates (Fig. 3 (TC3)) and continued until the end 

of the up-flow percolation tests. The leaching patterns of Al could be attributed to the 

dissolution of its oxides as a result of flushing out of Al due to continuous inflow of brine 

solution. The slight increase observed in the concentration of Al in SC3 leachates at the 

beginning of the tests could be attributed to the dissolution of amorphous aluminosilicates 

in the fly ash. In fly ash systems, it was argued that after the rapid dissolution of CaO and 

other soluble salts, the mineral phase most susceptible to weathering are amorphous glassy 

aluminosilicates and silica (Seoane and Leirós 2001). The decrease observed at L/S 1 to 5 

in SC3 could be as a result of formation of transient phases (Hyks et al. 2009; 

Georgakopoulos et al. 2002; Tiruta-Barna et al. 2006) due to high pH of the up-flow 

percolation systems. 
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The sudden increase observed at L/S 10 in SC3 could be accounted for by the dissolution of 

the transient or by further dissolution of the glassy Al phases. The difference observed in 

the leaching trend of Al in TC systems (TC3) compared to that of SC systems (SC3) could be 

as a result of the lower pH of the former due to the dust suppression pretreatment it 

underwent before the sample was taken. The higher concentration of Al in TC systems (TC3) 

at the beginning of the tests could be as a result of the greater solubility of the amorphous 

glassy or crystalline Al phases in the fly ash due to the lower pH of TC systems. 

 

The release of Si in both SC and TC systems (Fig. 3 (SC4 and TC4)) followed nearly the same 

trend. The concentration of Si at the beginning of the tests (L/S 0.1–2) was observed to be 

lower than the Si concentration in UB which indicates that Si was removed from the brine 

solution during equilibration. The removal of Si at the beginning of the tests could be due to 

the formation of transient amorphous Si-bearing mineral phases. Georgakopoulos et al. 

(2002) suggested that the presence of Al and Si in solution at high pH could lead to the 

formation of amorphous Al hydroxides and Si-rich mineral phases such as gehlenite 

(Ca2Al2SiO73SiO5) and hatrurite (Ca3SiO5). The formation of these phases may be 

possible due to the significant concentration of Ca released into the up-flow percolation 

systems. A rapid increase in Si concentration was observed at L/S 5–20 and 2–10 in SC and 

TC systems, respectively (Fig. 3 (SC4 and TC4)), with more Si released from SC fly ash (≈15 

mg/L) than TC fly ash (≈6 mg/L). The increase in both systems could be accounted for by 

the dissolution of the probable transient secondary mineral phases formed or as a result of 

http://repository.uwc.ac.za



8 
 

the further dissolution of the silica matrix of the fly ash (Jankowski et al. 2006; Ward et al. 

2009) in case of SC systems (SC4). In the case of TC systems (TC4), the dissolution of some 

transient amorphous silica containing phases formed at the beginning of the tests could 

possibly account for the increase at L/S 5 and 10. This assumption was based on the fact 

that despite the increase in the concentration of Si at L/S 2–10 in TC systems (TC4), the 

concentration of Si in TC systems remained lower than its concentration in the UB. 

 

The concentration of Ca in UB was about 91 mg/L while SO4 levels in UB were exceptionally 

high, being nearly 9,000 mg/L (Fig. 4). The concentration of Ca in leachates from both SC 

and TC up-flow percolation systems (Fig. 4 (SC5 and TC5)) increased after equilibration at 

the beginning of the tests (L/S 0.1) compared with its concentration in the unreacted 

brine solutions. The concentration of Ca in the leachates gradually increased until a 

maximum of about 500 and 350 mg/L was reached at L/S 55 and 5 in SC and TC systems, 

respectively. The trend of Ca released from the fly ash–brine systems showed that apart 

from the initial dissolution of readily soluble Ca-rich phases such as CaO, the dissolution of 

Ca-rich phases locked in the fly ash matrix contributed significantly to the gradual increase 

in Ca concentration. The fluctuation in the concentration of Ca in the SC systems and the 

gradual decrease observed in TC systems (Fig. 4 (TC5)) after the maximum was reached at 

L/S 5 could be as a result of depletion of Ca-bearing phases by flushing with brine 

solution or due to precipitation and dissolution of transient Ca-rich mineral phases in the 

fly ash–brine systems (Georgakopoulos et al. 2002; Hjelmar 1990). Steenari et al. (1999) 

suggested that the presence of other species such as SO4 in alkaline fly ash systems could 

produce Ca-hydrated mineral phases such as gypsum and calcite. Ca in fly ash occurs mainly as 

lime (CaO), anhydrite (CaSO4) and in the glass matrix, and these anhydrous phases are 

very reactive when exposed to aqueous solution. Therefore, the solubility and reactivity of Ca 

with other species could be responsible for the trend of Ca observed in leachates in the up-flow 

percolation systems. 

 

The very high concentration of SO4 in the leachates from both SC and TC systems showed a 

very significant decrease after equilibration at the beginning of the up-flow percolation tests 

compared to the concentration of SO4 in the unreacted brine solutions (UB) (Fig. 4 (SC6 

and TC6)). This indicates that SO4 was significantly removed from the brine during and 

after the equilibration until 1 bed volume of brine had percolated. The concentration of SO4 

removed from the brine  solution  by  the  fly  ashes  immediately  after equilibration  (at  

L/S  0.1)  was  between  6,000  and 8,000 mg/L. After the very low concentration of SO4 

observed in the leachates at the beginning of the tests, the   SO4     concentration   increased   

again   until   a maximum (between 7,000 and 8,000 mg/L) was observed at L/S 20 and 10 

in SC and TC up-flow percolation systems, respectively (Fig. 4 (SC6 and TC6)). 
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The trends of SO4 showed that SO4 the brine solutions by the fly ashes as a result of 

precipitation of SO4 bearing phases. According to Bock (1961), in a system containing 

considerable concentration of Ca and SO4, the precipitation of gypsum (CaSO4·2H2O) 

could control the release of SO4 but when the solution contains excess of Na or KCl, 
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the precipitation of anhydrite is possible only at high temperature. The removal of SO4 

from the fly ash-brine systems especially at the beginning of the tests could be 

attributed to the formation of transient CaSO4-rich mineral phases such as gypsum 

(Gitari et al. 2009). The significant amounts of SO4 present in the brine solution could 

interact with the Ca released from the fly ashes during equilibration to form transient 

CaSO4-rich mineral phases. Gypsum is moderately soluble in water or in aqueous 

solution. The gradual dissolution of the transient hydrated CaSO4-rich phase formed 

at the beginning of the tests (during equilibration period) could be responsible for the 

increase in the concentration of SO4 in the leachates after the initial minimum 

concentration. This  shows that the  mineral phases formed are unstable and subject 

to continuous weathering if an excess of brine (more that L/S 1) is percolated through 

the ash system. 

 

The concentration of Mg in the UB was approximately 140 mg/L (Fig. 4 (SC7 and TC7)). 

The concentration of Mg in the leachates of the up-flow percolation systems indicates 

the immediate and constant removal of approximately 140 mg/L Mg from the brine 

solutions during the interactions with the fly ashes despite the continuous inflow of 

the fresh brine solutions (Fig. 4 (SC7 and TC7)). An increase in the concentration of 

Mg was observed at L/S 55 and 10 in SC (SC7) and TC (TC7) up-flow percolation 

systems, respectively. The low concentration of Mg which indicates its continuous 

removal by the fly ash in the system could be attributed to the formation of Mg-rich 

mineral phases such as Mg(OH)2 due to the alkaline pH of the systems which favours 

the formation of such mineral phases. The hydrolysis of MgO in fly ash in alkaline 

condition has been observed to form sparingly soluble brucite (Mg(OH)2) (Tiruta-

Barna et al. 2006; Warren and Dudas 1984), and this could account for the low level 

of Mg in the leachates of the up-flow percolation tests. Apart from MgO present on 

the surface of fly ash, Mg is also present in the slowly dissolving glassy phase 

(Mattigod et al. 1990), and this could account for the gradual increase   observed   in   

Mg   concentration   in   the leachates  above  levels  found  in  UB  over  time  at L/S 55 

in TC (TC7) systems. 

 

Na concentration was very high in UB, being approximately 4,323 mg/L while Cl level 

was also high (2,424 mg/L). Two different trends were observed for the release of Na 

into the leachates from SC and TC up-flow percolation systems (Fig. 5 (SC8 and TC8)). A 

slight increase in the concentration of Na (approximately 5,000 mg/L) was observed 

in SC systems (SC8) after equilibration while initially, at L/S 0.1, a significant decrease 

to about 1,000 mg/L in Na concentration was observed in TC (TC8) systems 

immediately after equilibration and at the beginning of the up-flow percolation tests. 

After the initial increase in the concentration of Na in SC system, a slight and slow 

decrease (only slightly lower than the levels in UB) was observed and this 

concentration (>4,000 mg/L) was maintained throughout the period of the tests. On 

the other hand in the TC systems, the concentration of Na increased abruptly at L/S 0.2 

from approximately 1,000 mg/L to 4,000 mg/L and was almost equal to its 
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concentration in UB throughout the percolation tests with small fluctuation except at 

L/S 35 where a slight decrease in the concentration was observed. The slight increase of 

Na at L/S 0.1 in SC systems when compared with the concentration in UB could be 

attributed to the leaching of Na from the fly ash during the 3-day equilibration period 

while the initial decrease in Na concentration in TC systems immediately after the 

equilibration period may be as a result of the formation of transient Na-containing phase 

upon contact with fly ash due to the super-saturation of Na in the brine containing 

systems. The nearly immediate dissolution of the transient Na-containing phase or the 

exhaustion of the capacity of the fly ash to capture more Na from the brine due to 

continuous flow of brine may account for the increase in Na concentration in TC 

systems at L/S 0.2. These trends indicate that after the initial removal of Na, the 

capacity of the fly ashes to remove more Na from the brine solutions during the tests 

reduced as a result of continuous flow of fresh brine solution. This shows that the 

removal of Na from the brine solution is insignificant. 

 

The concentration of Cl in the leachates after contact with fly ash was lower than the 

concentration in UB throughout the period of the up-flow percolation tests (Fig. 5 (SC9 

and TC9)). This indicates that some Cl was continuously removed from the brine 

solution throughout the period of the up-flow percolation tests. 
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Cl was initially removed from the brine solution in TC systems after equilibration. 

Between L/S 0.1 and 0.2, a proportion of the Cl removed from TC systems was redissolved 

and  the  levels  increased  from  about 1,000 mg/L to about 2,000 mg/L for the 

duration of the experiments with small fluctuation. The removal patterns of Cl in TC 

systems correlated with those of Na indicating that the removal of Cl from the systems 

could be controlled by the formation of a transient halite (NaCl) phase at the 

beginning of the tests. Due to the sufficient concentration of Ca and Al in the up-flow 

percolation systems as a result of matrix dissolution of fly ash, the probable formation of 

Friedel’s salt [Ca4Al2Cl2(OH)12·4H2O] could also account for the reduction in the 

concentration of Cl after the initial stages in the systems (Hyks et al. 2009; 

Suryavanshi and Swamy 1996; Bothe and Brown 2004). 

 

3.4 Mass Balance 

The percentage of species leached from the fly ashes or removed from the brine solution 

(UB) at selected L/S ratios   during   the   up-flow   percolation   tests   are presented in 

Tables 2 and 3. The percent leached or removal of the species was calculated using the 

following equation; 

 

 
 

The calculated mass balance (Tables 2 and 3) revealed that the removal of Na, mostly at the 

beginning of the experiment, was low, in the range of 2.3 % except in the TC fly ash–

brine system where 69.4 % was only observed at L/S 0.1. The removal of Mg, Cl and SO4 

was in the range of 92–100, 8.5–30.3 and 12.3–99.4 %, respectively, in SC fly ash–brine 

system, while in the TC fly ash–brine system, the percentage removal of Mg, Cl and SO4 was 

in the range of 99.7– 100, 19.5–58.8 and 12.3–80.7 %, respectively, at different L/S ratios. 

The removal of some species from the brine solution at specific L/S ratio could be attributed 

to the precipitation process in the up-flow percolation systems. However, Ca and Al were 

leached out of the fly ashes into the brine solution in significant percentages irrespective of 

the L/S ratio. 
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The removal capacity of the two fly ashes varied slightly. The percentage of some species 

such as Mg, Si and SO4 removed from the brine solution by SC fly ash was higher than the 

percentage removed by TC fly ash in most cases. The increase in the removal capacity of SC 

fly ash could be attributed to its slightly higher pH than TC fly ash. The TC fly ash removed 

more Na and Cl from the brine solution than SC fly ash, which could be attributed to the effect 

of the super-saturation of these species bearing in mind that the TC fly ash had been 

moistened with brine before sampled. 

 

4 Conclusion 

The removal and subsequent leaching of some species in the systems could be as a result of 

precipitation followed by dissolution of the transient secondary mineral phases formed 

during the interactions. The release of Ca, Al and Na throughout the period of the 

percolation tests indicates that these species would continuously leach from the fly ashes 

by contact with brine flows. The trends observed in the release of the major species from the 

up-flow percolation systems showed that the removal capacity of the fly ashes could be 

exhausted at a stage due to continuous inflow of brine thereby overwhelming the removal of 

some species by the fly ashes. 
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Apart from the reduction in the capacity of the fly ash to remove species from brine, metals 

held in the fly ash matrix could be released over time by brine flowing continuously through 

the ash system thereby increase the leaching of some species. The trend of the mobility of the 

major species in the fly ash–brine systems gives an insight into the long-term environmental 

effect of co-disposal technique. Hence, the co-disposal of brine with fly ash would require a 

careful consideration of the bed volume of brine that goes into the ash systems. 
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