37 research outputs found

    New insights into the distribution and conservation status of the Golden-White Tassel-Ear Marmoset Mico chrysoleucos (Primates, Callitrichidae)

    Get PDF
    Among the 13 Mico species recognized by the IUCN Red List of Threatened Species, six are listed as "Data Deficient". The geographic range of most of the Mico species has been estimated from only a few records. We report new localities and the geographic extension of Mico chrysoleucos. In addition, we confirmed the presence of the species in two distinct protected areas. We modeled the habitat suitability of M. chrysoleucos using the maximum entropy method and including new records obtained by the authors in the state of Amazonas, Brazil. From the total area of occurrence calculated for the species, 22.8% is covered by protected areas and indigenous lands. The annual mean deforestation rate estimated between 2000 and 2015 was 2.95%, and the total area deforested by 2015 was 3354 km2 or 8.6% of the total distribution limits of the species. The habitat lost between 2000 and 2015 was 3.2% (1131 km2 ) of the total potential distribution, while the habitat loss area legally protected was 31 km2, and the habitat loss in settlements was equal to 691 km2. Our results extend the geographic distribution of the species about 100 km farther south, with the Maracanã River being a possible geographic barrier for the species. The significantly low rate of habitat loss inside protected areas and indigenous land, when compared to unprotected areas, points out the importance of these areas to M. chrysoleucos conservation. The species is relatively wide-ranging, legally protected, and resilient to regional anthropic threats. However, the hydroelectric schemes and the improvement of the road system in southern Amazonia pose an imminent threat to the species

    Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters

    Get PDF
    We introduce a galaxy cluster mass observable, μ⋆, based on the stellar masses of cluster members, and we present results for the Dark Energy Survey (DES) Year 1 (Y1) observations. Stellar masses are computed using a Bayesian model averaging method, and are validated for DES data using simulations and COSMOS data. We show that μ⋆ works as a promising mass proxy by comparing our predictions to X-ray measurements. We measure the X-ray temperature–μ_{⋆} relation for a total of 129 clusters matched between the wide-field DES Y1 redMaPPer catalogue and Chandra and XMM archival observations, spanning the redshift range 0.1 < z < 0.7. For a scaling relation that is linear in logarithmic space, we find a slope of α = 0.488 ± 0.043 and a scatter in the X-ray temperature at fixed μ_{*} of σ1nT_{x}|μ_{*} = 0.266_{-0.020}^{+0.019} for the joint sample. By using the halo mass scaling relations of the X-ray temperature from the Weighing the Giants program, we further derive the μ⋆-conditioned scatter in mass, finding σ1nM|μ_{*} = 0.26_{-0.10}^{+0.15}. These results are competitive with well-established cluster mass proxies used for cosmological analyses, showing that μ_{⋆} can be used as a reliable and physically motivated mass proxy to derive cosmological constraints

    Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study

    Get PDF
    Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe. Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures. Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis. Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients

    Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug-micelle interaction. Chloroquine first dissociation constant (pKa(1)) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K-b) revealed that electrostatic forces mediate charged drug-micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine-micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. (C) 2013 Elsevier B.V. All rights reserved.1474958Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [05/53002-4

    Modelling the trash blanket effect on sugarcane growth and water use

    No full text
    The traditional practice of burning at the pre-harvesting of sugarcane has being phased-out in Brazil, resulting in the maintenance of a crop s residue layer on soil surface, namely the Green Cane Trash Blanket (GCTB). New technologies for electricity and second-generation ethanol (2G) production from crop residues have raised the question on what would be the optimum amount of crop residue left on the field to keep the agronomic and environmental benefits of GCTB. To support informed decision making on sugarcane trash management, we updated, evaluated and applied a new version of the SAMUCA model to simulate the sugarcane growth and water use under the GCTB effect. The updated model was calibrated and parameterized for bare soil and GCTB conditions and evaluated across different Brazilian regions. Thirty-year simulations were then conducted with the updated model to quantify the effects of GCTB on sugarcane growth and water use where sugarcane is traditionally grown in Brazil. The updated version of SAMUCA model showed equal or superior performance when compared with widely-used process-based models for sugarcane. Based on our 30-year simulations, the GCTB exhibited a high probability to promote a beneficial effect on sugarcane yields in dry climates (>90%), with the potential for increasing, on average, 14 ton ha−1 of fresh cane yield in Petrolina, Brazil. Although the beneficial effect on yields were not significant in humid regions, the maintenance of 12 ton ha−1 of GCTB was associated with a high probability (>87%) in reducing the water use of sugarcane cropping system by 89 mm, on average, potentially reducing irrigation demand in the early stages of crop development while protecting crop production under dry spell events. The new version of SAMUCA model offers as a tool for decision making on mulch management in sugarcane plantations
    corecore