232 research outputs found

    Towards symmetry driven and nature inspired UV filter design

    Get PDF
    In plants, sinapate esters offer crucial protection from the deleterious effects of ultraviolet radiation exposure. These esters are a promising foundation for designing UV filters, particularly for the UVA region (400 – 315 nm), where adequate photoprotection is currently lacking. Whilst sinapate esters are highly photostable due to a cis-trans (and vice versa) photoisomerization, the cis-isomer can display increased genotoxicity; an alarming concern for current cinnamate ester-based human sunscreens. To eliminate this potentiality, here we synthesize a sinapate ester with equivalent cis- and trans-isomers. We investigate its photostability through innovative ultrafast spectroscopy on a skin mimic, thus modelling the as close to true environment of sunscreen formulas. These studies are complemented by assessing endocrine disruption activity and antioxidant potential. We contest, from our results, that symmetrically functionalized sinapate esters may show exceptional promise as nature-inspired UV filters in next generation sunscreen formulations

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Clinical management and burden of bipolar disorder: a multinational longitudinal study (WAVE-bd Study)

    Get PDF
    BACKGROUND: Studies in bipolar disorder (BD) to date are limited in their ability to provide a whole-disease perspective--their scope has generally been confined to a single disease phase and/or a specific treatment. Moreover, most clinical trials have focused on the manic phase of disease, and not on depression, which is associated with the greatest disease burden. There are few longitudinal studies covering both types of patients with BD (I and II) and the whole course of the disease, regardless of patients' symptomatology. Therefore, the Wide AmbispectiVE study of the clinical management and burden of Bipolar Disorder (WAVE-bd) (NCT01062607) aims to provide reliable information on the management of patients with BD in daily clinical practice. It also seeks to determine factors influencing clinical outcomes and resource use in relation to the management of BD. METHODS: WAVE-bd is a multinational, multicentre, non-interventional, longitudinal study. Approximately 3000 patients diagnosed with BD type I or II with at least one mood event in the preceding 12 months were recruited at centres in Austria, Belgium, Brazil, France, Germany, Portugal, Romania, Turkey, Ukraine and Venezuela. Site selection methodology aimed to provide a balanced cross-section of patients cared for by different types of providers of medical aid (e.g. academic hospitals, private practices) in each country. Target recruitment percentages were derived either from scientific publications or from expert panels in each participating country. The minimum follow-up period will be 12 months, with a maximum of 27 months, taking into account the retrospective and the prospective parts of the study. Data on demographics, diagnosis, medical history, clinical management, clinical and functional outcomes (CGI-BP and FAST scales), adherence to treatment (DAI-10 scale and Medication Possession Ratio), quality of life (EQ-5D scale), healthcare resources, and caregiver burden (BAS scale) will be collected. Descriptive analysis with common statistics will be performed. DISCUSSION: This study will provide detailed descriptions of the management of BD in different countries, particularly in terms of clinical outcomes and resources used. Thus, it should provide psychiatrists with reliable and up-to-date information about those factors associated with different management patterns of BD. TRIAL REGISTRATION NO: ClinicalTrials.gov: NCT01062607

    Histone H4 Lysine 12 Acetylation Regulates Telomeric Heterochromatin Plasticity in Saccharomyces cerevisiae

    Get PDF
    Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity

    Functional Analysis of the Phycomyces carRA Gene Encoding the Enzymes Phytoene Synthase and Lycopene Cyclase

    Get PDF
    Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism

    Mitochondrial Ca2+ Overload Underlies Aβ Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs

    Get PDF
    Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD

    Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    Get PDF
    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses
    corecore