247 research outputs found

    New national and regional Annex I Habitat records: from #26 to #36

    Get PDF
    New Italian data on the distribution of the Annex I Habitats 1510*, 2130*, 2250*, 3180*, 3260, 5230*, 6410, 7140, 7220*, 9320 are reported in this contribution. Specifically, 14 new occurrences in Natura 2000 sites are presented and 20 new cells are added in the EEA 10 km × 10 km reference grid. The new data refer to the Italian administrative regions of Abruzzo, Apulia, Friuli Venezia Giulia, Liguria, Marche, Molise, Sardinia, Sicily, Tuscany and Umbria

    Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study

    Get PDF
    Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    A wide-field photometric study of the globular cluster system of NGC 4636

    Full text link
    We investigate the unusually rich cluster system of NGC4636 with wide-field Washington photometry. The globular cluster luminosity function can be followed roughly 1 mag beyond the turn-over magnitude. This corresponds to a distance modulus of m-M=31.24+-0.17, 0.4 mag larger than the distance determined from surface brightness fluctuations. The high specific frequency is confirmed, yet the exact value remains uncertain because of the uncertain distance: it varies between 5.6+-1.2 and 8.9+-1.2. The globular cluster system has a clearly bimodal color distribution. The color peak positions show no radial dependence and are in good agreement with the values found for other galaxies studied in the same filter system. However, a luminosity dependence is found: brighter clusters with an ``intermediate'' color exist. The clusters exhibit a shallow radial distribution within 7'.Within the same radial interval, the galaxy light has a distinctly steeper profile. Because of the difference in the cluster and light distribution the specific frequency increases considerably with radius. At 7' and 9' the density profiles of the red and blue clusters, respectively, change strongly which indicates that we reach the outer rim of the cluster system at approximately 11'. This feature is seen for the first time in a globular cluster system. While the radial distribution of the cluster and field populations are rather different, this is not true for the ellipticity of the system: the elongation as well as the position angle of the cluster system agree well with the galaxy light. We compare the radial distribution of globular clusters with the light profiles for a sample of elliptical galaxies. The difference observed in NGC 4636 is typical of an elliptical galaxy of this luminosity.Comment: Accepted for publication in A&A, 16 pages, 15 figure
    corecore