42 research outputs found

    Methyl-β-Cyclodextrins Preferentially Remove Cholesterol from the Liquid Disordered Phase in Giant Unilamellar Vesicles

    Get PDF
    Methyl-β-cyclodextrins (MβCDs) are molecules that are extensively used to remove and to load cholesterol (Chol) from artificial and natural membranes; however, the mechanism of Chol extraction by MβCD from pure lipids or from complex mixtures is not fully understood. One of the outstanding questions in this field is the capability of MβCD to remove Chol from lipid domains having different packing. Here, we investigated the specificity of MβCD to remove Chol from coexisting macrodomains with different lipid packing. We used giant unilamellar vesicles (GUVs) made of 1,2-dioleoylphosphatidylcholine:1,2-dipalmitoylphatidylcholine:free cholesterol, 1:1:1 molar ratio at 27°C. Under these conditions, individual GUVs present Chol distributed into lo and ld phases. The two phases can be distinguished and visualized using Laurdan generalized polarization and two-photon excitation fluorescence microscopy. Our data indicate that MβCD removes Chol preferentially from the more disordered phase. The process of selective Chol removal is dependent on the MβCD concentration. At high concentrations, MβCD also removes phospholipids

    Electron spin resonance in membrane research: protein–lipid interactions from challenging beginnings to state of the art

    Get PDF
    Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid–protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10× slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments

    Interaction of short modified peptides deriving from glycoprotein gp36 of feline immunodeficiency virus with phospholipid membranes

    Get PDF
    A tryptophan-rich octapeptide, C8 (Ac-Trp-Glu-Asp-Trp-Val-Gly-Trp-Ile-NH2), modelled on the membrane-proximal external region of the feline immunodeficiency virus (FIV) gp36 glycoprotein ectodomain, exhibits potent antiviral activity against FIV. A mechanism has been proposed by which the peptide, being positioned on the surface of the cell membrane, inhibits its fusion with the virus. In the present work, peptide–lipid interactions of C8 with dimyristoyl phosphatidylcholine liposomes are investigated using electron spin resonance spectroscopy of spin-labelled lipids. Three other peptides, obtained from modifications of C8, have also been investigated, in an attempt to clarify the essential molecular features of the interactions involving the tryptophan residues. The results show that C8 adsorbs strongly on the bilayer surface. Membrane binding requires not only the presence of the Trp residues in the sequence, but also their common orientation on one side of the peptide that is engendered by the WX2 WX2 W motif. Membrane interaction correlates closely with peptide antiviral activity, indicating that the membrane is essential in stabilizing the peptide conformation that will be able to inhibit viral infection

    Charge Isomers of Myelin Basic Protein: Structure and Interactions with Membranes, Nucleotide Analogues, and Calmodulin

    Get PDF
    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Paramagnetic probes in membrane biophysics

    No full text
    The use of paramagnetic probes in membrane research is reviewed. Electron paramagnetic resonance studies on model and biological membranes doped with covalent and non-covalent spin-labels have been discussed with special emphasis on the methodology and the type of information obtainable on several important phenomena like membrane fluidity, lipid flip-flop, lateral diffusion of lipids, lipid phase separation, lipid bilayer phase transitions, lipid-protein interactions and membrane permeability. Nuclear magnetic resonance spectroscopy has also been effectively used to study the conformations of cation mediators across membranes and to analyse in detail the transmembrane ionic motions at the mechanistic level

    Location of valinomycin in lipid vesicles

    No full text
    The location of the cyclododecadepsipeptide, valinomycin in vesicles formed from two synthetic lipids is studied by differential scanning calorimetry, spin-label partitioning electron paramagnetic resonance and [1H][^1H]-nuclear magnetic resonance. The results show that valinomycin is located near the head group region of dipalmitoyl phosphatidyl choline vesicles and in the hydrophobic core of the dimyristoyl phosphatidyl choline vesicles in the liquid crystalline phase

    Interaction of manganese(II) with valinomycin: Observation of mixed complexes

    No full text
    The interaction of antibiotic valinomycin with manganese (II) has been studied using circular dichroism, electron spin resonance and infrared techniques. Results show that Mn(II) forms complexes with valinomycin in both 2:1 (valinomycin-ion-valinomycin sandwich) and 1:1 (equimolar) stoichiometries. The 1:1 type observed here is very different from the well known K+-valinomycin bracelet conformation

    Solution conformations of valinomycin-divalent cation complexes

    No full text
    The solution conformations of complexes of valinomycin with magnesium and strontium were investigated by circular dichroism, nuclear magnetic resonance and infrared techniques. The results were compared with our earlier results on lithium, calcium, manganese and barium complexes. All these cations, except lithium, form 2:1 ion sandwich and 1:1 carrier-cation complexes with valinomycin. The 1:1 complex has a conformation different from that of the valinomycin-potassium complex. Lithium forms only the 1:1 complex. Strontium and barium form a large number of 1:2 complexes with open conformations rapidly interconverting in solution in addition to the above 2:1 and 1:1 complexes. These observations are rationalized taking into account the ionic radii and coordination numbers of the cations and the conformational restraints of valinomycin molecules. It is suggested that cations with co-ordination numbers of about six (magnesium and calcium) form the 2:1 and 1:1 complexes whereas those with higher co-ordination numbers (strontium and barium) form 1:2 complexes also
    corecore