463 research outputs found

    Examining the transcriptional response in wheat Fhb1 near-isogenic lines to Fusarium graminearum infection and deoxynivalenol treatment

    Get PDF
    Citation: Hofstad, A. N., Nussbaumer, T., Akhunov, E., Shin, S., Kugler, K. G., Kistler, H. C., . . . Muehlbauer, G. J. (2016). Examining the transcriptional response in wheat Fhb1 near-isogenic lines to Fusarium graminearum infection and deoxynivalenol treatment. Plant Genome, 9(1). https://doi.org/10.3835/plantgenome2015.05.0032Fusarium head blight (FHB) is a disease caused predominantly by the fungal pathogen Fusarium graminearum that affects wheat and other small-grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON), accumulate during infection and increase pathogen virulence and decrease grain quality. The Fhb1 locus on wheat chromosome 3BS confers Type II resistance to FHB and resistance to the spread of infection on the spike and has been associated with resistance to DON accumulation. To gain a better genetic understanding of the functional role of Fhb1 and resistance or susceptibility to FHB, we examined DON and ergosterol accumulation, FHB resistance, and the whole-genome transcriptomic response using RNA-seq in a near-isogenic line (NIL) pair carrying the resistant and susceptible alleles for Fhb1 during F. graminearum infection and DON treatment. Our results provide a gene expression atlas for the resistant and susceptible wheat–F. graminearum interaction. The DON concentration and transcriptomic results show that the rachis is a key location for conferring Type II resistance. In addition, the wheat transcriptome analysis revealed a set of Fhb1-responsive genes that may play a role in resistance and a set of DON-responsive genes that may play a role in trichothecene resistance. Transcriptomic results from the pathogen show that the F. graminearum genome responds differently to the host level of resistance. The results of this study extend our understanding of host and pathogen responses in the wheat–F. graminearum interaction. © Crop Science Society of America

    First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen

    Full text link
    Using density-functional theory in combination with a thermodynamic formalism we calculate the relative stability of various structural models of the polar O-terminated (000-1)-O surface of ZnO. Model surfaces with different concentrations of oxygen vacancies and hydrogen adatoms are considered. Assuming that the surfaces are in thermodynamic equilibrium with an O2 and H2 gas phase we determine a phase diagram of the lowest-energy surface structures. For a wide range of temperatures and pressures we find that hydrogen will be adsorbed at the surface, preferentially with a coverage of 1/2 monolayer. At high temperatures and low pressures the hydrogen can be removed and a structure with 1/4 of the surface oxygen atoms missing becomes the most stable one. The clean, defect-free surface can only exist in an oxygen-rich environment with a very low hydrogen partial pressure. However, since we find that the dissociative adsorption of molecular hydrogen and water (if also the Zn-terminated surface is present) is energetically very preferable, it is very unlikely that a clean, defect-free (000-1)-O surface can be observed in experiment.Comment: 10 pages, 4 postscript figures. Uses REVTEX and epsf macro

    Gamma-ray and radio tests of the e+e- excess from DM annihilations

    Full text link
    PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that if it is due to Dark Matter annihilations, the associated gamma-ray flux and the synchrotron emission produced by e+e- in the galactic magnetic field violate HESS and radio observations of the galactic center and HESS observations of dwarf Spheroidals, unless the DM density profile is significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos corrected (no changes in the analysis nor the results), some references and comments added; v3: minor additions, matches published versio

    Characterizing the weight-glycemia phenotypes of type 1 diabetes in youth and young adulthood

    Get PDF
    Introduction Individuals with type 1 diabetes (T1D) present with diverse body weight status and degrees of glycemic control, which may warrant different treatment approaches. We sought to identify subgroups sharing phenotypes based on both weight and glycemia and compare characteristics across subgroups. Research design and methods Participants: with T1D in the SEARCH study cohort (n=1817, 6.0-30.4 years) were seen at a follow-up visit >5 years after diagnosis. Hierarchical agglomerative clustering was used to group participants based on five measures summarizing the joint distribution of body mass index z-score (BMIz) and hemoglobin A1c (HbA1c) which were estimated by reinforcement learning tree predictions from 28 covariates. Interpretation of cluster weight status and glycemic control was based on mean BMIz and HbA1c, respectively. Results: The sample was 49.5% female and 55.5% non-Hispanic white (NHW); mean±SD age=17.6±4.5 years, T1D duration=7.8±1.9 years, BMIz=0.61±0.94, and HbA1c=76±21 mmol/mol (9.1±1.9)%. Six weight-glycemia clusters were identified, including four normal weight, one overweight, and one subgroup with obesity. No cluster had a mean HbA1c <58 mmol/mol (7.5%). Cluster 1 (34.0%) was normal weight with the lowest HbA1c and comprised 85% NHW participants with the highest socioeconomic position, insulin pump use, dietary quality, and physical activity. Subgroups with very poor glycemic control (ie, ≥108 mmol/mol (≥12.0%); cluster 4, 4.4%, and cluster 5, 7.5%) and obesity (cluster 6, 15.4%) had a lower proportion of NHW youth, lower socioeconomic position, and reported decreased pump use and poorer health behaviors (overall p<0.01). The overweight subgroup with very poor glycemic control (cluster 5) showed the highest lipids and blood pressure (p<0.01). Conclusions: There are distinct subgroups of youth and young adults with T1D that share weight-glycemia phenotypes. Subgroups may benefit from tailored interventions addressing differences in clinical care, health behaviors, and underlying health inequity. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ

    Identification of clinically relevant dysglycemia phenotypes based on continuous glucose monitoring data from youth with type 1 diabetes and elevated hemoglobin A1c

    Get PDF
    Background/Objective: To identify and characterize subgroups of adolescents with type 1 diabetes (T1D) and elevated hemoglobin A1c (HbA1c) who share patterns in their continuous glucose monitoring (CGM) data as “dysglycemia phenotypes.”. Methods: Data were analyzed from the Flexible Lifestyles Empowering Change randomized trial. Adolescents with T1D (13-16 years, duration >1 year) and HbA1c 8% to 13% (64-119 mmol/mol) wore blinded CGM at baseline for 7 days. Participants were clustered based on eight CGM metrics measuring hypoglycemia, hyperglycemia, and glycemic variability. Clusters were characterized by their baseline features and 18 months changes in HbA1c using adjusted mixed effects models. For comparison, participants were stratified by baseline HbA1c (≤/>9.0% [75 mmol/mol]). Results: The study sample included 234 adolescents (49.8% female, baseline age 14.8 ± 1.1 years, baseline T1D duration 6.4 ± 3.7 years, baseline HbA1c 9.6% ± 1.2%, [81 ± 13 mmol/mol]). Three Dysglycemia Clusters were identified with significant differences across all CGM metrics (P <.001). Dysglycemia Cluster 3 (n = 40, 17.1%) showed severe hypoglycemia and glycemic variability with moderate hyperglycemia and had a lower baseline HbA1c than Clusters 1 and 2 (P <.001). This cluster showed increases in HbA1c over 18 months (p-for-interaction = 0.006). No other baseline characteristics were associated with Dysglycemia Clusters. High HbA1c was associated with lower pump use, greater insulin doses, more frequent blood glucose monitoring, lower motivation, and lower adherence to diabetes self-management (all P <.05). Conclusions: There are subgroups of adolescents with T1D for which glycemic control is challenged by different aspects of dysglycemia. Enhanced understanding of demographic, behavioral, and clinical characteristics that contribute to CGM-derived dysglycemia phenotypes may reveal strategies to improve treatment

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Early Atomic Models - From Mechanical to Quantum (1904-1913)

    Get PDF
    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J. J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic {\alpha}-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.Comment: 58 Pages + References, 8 Figures. Accepted for publication in the European Physical Journal H (Historical Perspectives on Contemporary Physics). V2 - minor typos corrected and a footnote added to p.2

    Longitudinal Phenotypes of Type 1 Diabetes in Youth Based on Weight and Glycemia and Their Association With Complications

    Get PDF
    CONTEXT: Subclinical and clinical complications emerge early in type 1 diabetes (T1D) and may be associated with obesity and hyperglycemia. OBJECTIVE: Test how longitudinal "weight-glycemia" phenotypes increase susceptibility to different patterns of early/subclinical complications among youth with T1D. DESIGN: SEARCH for Diabetes in Youth observational study. SETTING: Population-based cohort. PARTICIPANTS: Youth with T1D (n = 570) diagnosed 2002 to 2006 or 2008. MAIN OUTCOME MEASURES: Participants were clustered based on longitudinal body mass index z score and HbA1c from a baseline visit and 5+ year follow-up visit (mean diabetes duration: 1.4 ± 0.4 years and 8.2 ± 1.9 years, respectively). Logistic regression modeling tested cluster associations with seven early/subclinical diabetes complications at follow-up, adjusting for sex, race/ethnicity, age, and duration. RESULTS: Four longitudinal weight-glycemia clusters were identified: The Referent Cluster (n = 195, 34.3%), the Hyperglycemia Only Cluster (n = 53, 9.3%), the Elevated Weight Only Cluster (n = 206, 36.1%), and the Elevated Weight With Increasing Hyperglycemia (EWH) Cluster (n = 115, 20.2%). Compared with the Referent Cluster, the Hyperglycemia Only Cluster had elevated odds of dyslipidemia [adjusted odds ratio (aOR) 2.22, 95% CI: 1.15 to 4.29], retinopathy (aOR 9.98, 95% CI: 2.49 to 40.0), and diabetic kidney disease (DKD) (aOR 4.16, 95% CI: 1.37 to 12.62). The EWH Cluster had elevated odds of hypertension (aOR 2.18, 95% CI: 1.19 to 4.00), dyslipidemia (aOR 2.36, 95% CI: 1.41 to 3.95), arterial stiffness (aOR 2.46, 95% CI: 1.09 to 5.53), retinopathy (aOR 5.11, 95% CI: 1.34 to 19.46), and DKD (aOR 3.43, 95% CI: 1.29 to 9.11). CONCLUSIONS: Weight-glycemia phenotypes show different patterns of complications, particularly markers of subclinical macrovascular disease, even in the first decade of T1D. Copyright © 2019 Endocrine Society
    corecore