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Abstract

Background and Objective: To identify and characterize subgroups of adolescents with type 1 

diabetes (T1D) and elevated hemoglobin A1c (HbA1c) who share patterns in their continuous 

glucose monitoring (CGM) data as ‘dysglycemia phenotypes.’

Methods: Data were analyzed from the Flexible Lifestyles Empowering Change randomized 

trial. Adolescents with T1D (13-16 years, duration>1 year, HbA1c 8-13% (64-119 mmol/mol) 

wore blinded CGM at baseline for 7-days. Participants were clustered based on eight CGM 

metrics measuring hypoglycemia, hyperglycemia, and glycemic variability. Clusters were 

characterized by their baseline features and 18-month changes in HbA1c using adjusted mixed 

Corresponding Author: Anna R. Kahkoska, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 245 
Rosenau Hall, Campus Box 7461, Chapel Hill NC 27599, Anna_kahkoska@med.unc.edu.
Contributors: ARK and EJM-D had full access to all the data in the study and take responsibility for the integrity of the data and the 
accuracy of the data analysis. ARK and EJM-D designed the analyses. ARK, CTN, MRK and EJM-D conducted the analyses. ARK 
and EJM-D drafted the initial manuscript. LAA, AEA, KSB, JBB, JC, CTN, and MRK reviewed all analyses and provided critical 
review of the manuscript.

Dualities of Interest: DMM has consulted for Abbott, the Helmsley Charitable Trust, Sanofi, and Eli Lilly and has served on an 
advisory board for Insulet. EJM-D has consulted for Helmsley Charitable Trust. All other authors declare no conflict of interest.

Data Availability: The data that support the findings of this study are available from the FLEX Study Executive Committee, but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are however available from the authors upon reasonable request and with permission of the FLEX Study Executive 
Committee.

HHS Public Access
Author manuscript
Pediatr Diabetes. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Pediatr Diabetes. 2019 August ; 20(5): 556–566. doi:10.1111/pedi.12856.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects models. For comparison, participants were stratified by baseline HbA1c (≤/>9.0% (75 

mmol/mol)).

Results: The study sample included 234 adolescents (49.8% female, age 14.8±1.1, duration 

6.4±3.7 years, HbA1c 9.6±1.2% (81±13 mmol/mol)). Three Dysglycemia Clusters were identified 

with significant differences across all CGM metrics (p<0.001). Dysglycemia Cluster 3 (n=40, 

17.1%) showed severe hypoglycemia and glycemic variability with moderate hyperglycemia and 

had a lower baseline HbA1c than Clusters 1 and 2 (p<0.001). This cluster showed increases in 

HbA1c over 18-mo (p-for-interaction=0.006). No other baseline characteristics were associated 

with Dysglycemia Clusters. High HbA1c was associated with lower pump use, greater insulin 

doses, more frequent blood glucose monitoring, lower motivation, and lower adherence to diabetes 

self-management (all p<0.05).

Conclusions: There are subgroups of adolescents with T1D for which glycemic control is 

challenged by different aspects of dysglycemia. Enhanced understanding of demographic, 

behavioral, and clinical characteristics that contribute to CGM-derived dysglycemia phenotypes 

may reveal strategies to improve treatment.
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Introduction

While hemoglobin A1c (HbA1c) is the gold standard for measuring intermediate-term 

glycemic control, continuous glucose monitoring (CGM) data captures transient glucose 

fluctuations to various thresholds of hypoglycemia and hyperglycemia, as well as overall 

glycemic variability in the daytime and overnight.1,2 These features of dysglycemia 

represent distinct clinical issues for individuals with type 1 diabetes which may be amenable 

to different self-management and medication adjustments.1 They also confer independent 

risk for short and long-term complications of type 1 diabetes.1-4 Recently, CGM data have 

also been used to provide validated metrics such as time in range5,6 or average glucose 

exposure over a shorter period of time, also referred to as the Glucose Management 

Indicator.7 CGM as a source of patient data thus offers the opportunity to understand 

patterns of glycemia that are not necessarily represented by HbA1c and inform an 

individualized approach to type 1 diabetes management for decreased patient burden and 

better outcomes.1

The most effective strategy to both leverage the depth and integrate the breath of information 

that CGM offers remains unclear, especially in light of the rapidly increasing uptake of 

CGM.8 This step is critical to inform tailored approaches to diabetes care. We focused on 

young individuals with type 1 diabetes and suboptimal glycemic control as it is measured by 

HbA1c because this population is in great need for improved clinical strategies.8,9 Our 

objective was to use longitudinal CGM data from adolescents with type 1 diabetes and 

elevated HbA1c >65 mmol/mol (8.0%) to identify clinically-relevant subgroups sharing 

multifacteted patterns in hypoglycemia, hyperglycemia, and glycemic variability as distinct 

‘dysglycemia phenotypes’. These comprehensive dysglycemia phenotypes could be used to 
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characterize glycemic control across the population in a more nuanced, patient-oriented 

manner compared to HbA1c and inform the development of future interventions.2

To follow best practices and maximize relevance to future research, we used a combination 

of CGM metrics consistent with Advanced Technologies & Treatments for Diabetes (ATTD) 

Congress consensus statement to standardize the reporting of CGM variables in clinical and 

epidemiologic research.10 Given significant skews in the distribution of key CGM metrics 

across the sample that are important to clinical care, namely hypo- and hyperglycemia, it 

was important to identify a statistical method that would retain information from data at the 

extremes of the distribution. We chose a neural-network approach to clustering and grouped 

individuals based on their placement on a self-organzing map (SOM) constructed from eight 

CGM metrics selected to be maximally clinically-relevant.11 The SOM is a machine 

learning technique that is robust to different distributions of data when uncovering 

underlying clusters.12 We then tested for differences in the baseline sociodemographic, 

clinical, and pyschosocial correlates of each Dysglycemia Cluster and 18-month changes in 

HbA1c.

Methods

Study Sample

Data were analyzed from the baseline visit of the Flexible Lifestyles Empowering Change 

randomized trial (FLEX) (ClinicalTrials.gov identifier: NCT01286350). FLEX was a 

randomized clinical trial testing an adaptive, 18-month intervention including behavioral 

skills and problem solving for youth with type 1 diabetes, with respect to HbA1c (primary 

outcome), glycemic variability, CVD risk factors, health-related quality of life, and cost 

effectiveness.13 The study was conducted at two pediatric endocrinology diabetes clinics in 

Colorado and Ohio, USA, with institutional review board approval for ethical conduct of 

human subjects research at each institution and at the coordinating center located in North 

Carolina.

Inclusion Criteria

FLEX enrolled 258 adolescents with type 1 diabetes who were instructed to wear a blinded 

CGM for 7 days at baseline.14 Participants were recruited from 05/0½014 to 04/04/2016.14 

Eligible participants were youth ages 13-16 years with type 1 diabetes for ≥1 year, literacy 

in English, HbA1c 64-119 mmol/mol (8.0-13.0%), and ≥1 primary caregiver with no other 

serious medical conditions or pregnancy. All participants and their caregivers provided 

informed assent and consent, respectively. Detailed considerations of the FLEX design and 

baseline participant characteristics have been described elsewhere.14

Participants were excluded from the present analyses if they reported a severe hypoglycemic 

event (an episode of hypoglycemia requiring external aid) during the study week (n=0) or if 

≥24 hours of CGM data were missing at the baseline visit (n=24).
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Measures

All data collection was standardized as per FLEX study protocol and are described in detail 

elsewhere.14

Continuous Glucose Monitoring—A blinded CGM [iPro®2 Professional CGM; 

Medtronic Diabetes, Northridge, CA; median absolute relative difference: 11.1%] was worn 

for a 7-day period to measure interstitial glucose levels in real time throughout the day and 

night. At the baseline visit, study participants inserted the iPro®2 CGM system with the 

Enlite™ sensor into abdominal subcutaneous adipose tissue. Participants were carefully 

instructed on the use and maintenance of the CGM and advised to calibrate the sensor before 

eating and before bed with an iPro2 compatible glucometer (OneTouch® Ultra® 2). The 

Enlite™ sensor measured interstitial glucose level every 5 minutes within the 3-147 

mmol/mol (40-400 mg/dL) range. On the last day of the CGM wear week, participants were 

reminded to send the devices back using a pre-paid box/envelope. CGM data were 

downloaded with CareLink iPro® System and uploaded to the coordinating center for data 

processing. As part of blinding, no communication from the device was available to 

participants.

Laboratory data—A central laboratory (Northwest Lipid Metabolism and Diabetes 

Research Laboratories, Seattle, WA, USA) provided oversight and conducted all assays. At 

all timepoints, HbA1c was measured in whole blood using an automated nonporous ion 

exchange HPLC system (model G-7; Tosoh Bioscience).

Clinical Measures—Height was measured using a stadiometer, and weight was measured 

to the nearest 0.1 kg using an electronic scale. Body mass index (BMI, weight (kg) / height 

(m)2) was calculated and then converted to an age- and sex-specific and BMI z-score (BMIz) 

according to the Centers for Disease Control and Prevention growth charts.15

Questionnaires—Standardized questionnaires were used to collect self-reported data 

including race/ethnicity, highest level of parental education, duration of type 1 diabetes, 

insulin delivery method (pump versus multiple daily injections (MDI)), and previous CGM 

use. Self-reported race and ethnicity was classified as non-Hispanic white, non-Hispanic 

Black, Black, and other including Asian/Pacific Islander, Native American, or unknown. 

Motivation and Intention were measured by a validated questionnaire adapted for relevance 

to type 1 diabetes self-management.16,17 The Social Problem Solving Inventory – Revised: 
Short (SPSI-R:S) was used to assess adolescents’ cognitive, affective, and behavioral 

abilities to resolve problems in everyday living.18 Diabetes adherence over the past 3 months 

was measured with the Diabetes Self-Management Profile – Self Report (DSMP-SR).19. 

Depressive symptoms were assessed using the Centers for Epidemiologic Study – 
Depression Scale (CES-D).20 Health-related quality of life was assessed with the Pediatric 
Quality of Life Inventory™ – Generic Core Scales (PedsQL™ Generic).21 Fear of 

hypoglycemia was assessed by the Hypoglycemia Fear Survey (HFS) 22. Adolescent-

reported diabetes-related family conflict was measured with the Diabetes Family Conflict 
Scale (DFCS).23
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Statistical Analysis

CGM Data Selection of Variables and Pre-processing—All CGM-variables were 

calculated for the 7-day wear time and were stratified by day (6:00 AM – 11:59 PM) and 

night (12:00 AM – 5:59 AM).10 First, a subset of eight CGM features recommended by the 

ATTD Congress as key metrics to assess glycemic control, reported by day and night, were 

selected for a total of sixteen variables (see Supplementary Material; Section 1).10 The 

justification for using CGM measures stratified by time block was two-fold. First, from a 

clinical and behavioral perspective, patterns in dysglycemia in the daytime versus overnight 

represent distinct phenomena and may carry specific implications for future intervention. 

For example, frequent hypoglycemia overnight is a distinct clinical issue from frequent 

hypoglycemia during the daytime, particularly in the youth and adolescent age range, and 

may be associated with different risk factors. In addition, CGM metrics by day and night 

were not found to be highly colinear from a statistical perspective. The variables were 

pruned to remove highly correlated variables, biological redundancy, and degrees of freedom 

(Supplementary Figure S1).24 The remaining eight CGM input metrics were selected to 

comprehensively characterize features of dysglycemia in the day and nighttime: area-over-

curve (AOC) of hypoglycemia (level 1; 3.9 mmol/L (70 mg/dL)), incidence of hypoglycemia 

(level 1; 3.9 mmol/L (70 mg/dL)) lasting 15 minutes or longer, area-under-curve (AUC) of 

hyperglycemia range (level 2; 13.9 mmol/L (250 mg/dL)), and glycemic variability as 

coefficient of variation (CV) (Supplementary Table S1). Of note, time in range was not 

included due to multicollinearity with the AUC 250 mg/dL metric (r= −0.80, p<0.0001). All 

variables were left continuous and standardized to be expressed on the same scale. To 

facilitate clinical interpretation, clusters were also characterized by percent of time spent in 

hypoglycemic (<3.9 mmol/L (70 mg/dL)) and hyperglycemic (13.9 mmol/L (250 mg/dL)) 

ranges, using the same threshold as the AOC and AUC measures, as well as time in range 

(3.9-10 mmol/L (70-180 mg/dL)).

Clustering Methods—The selection of SOM as a clustering algorithm and an in-depth 

description of the methods are deferred to the Supplementary Material; Section 2. Briefly, 

the SOM is a neural network11 that serves as a model-based clustering method 

(Supplementary Figure S2).24,25 The a priori justification for selecting a neural network-

based clustering approach was that it does not rely on strong assumptions about the 

underlying data such as the distributional assumption of multivariate normality or symmetry.
12 For measures of hypoglycemia and hyperglycemia, some individuals never experienced 

time below or above the threshold, resulting in severely skewed distributions resistant to 

transformation. The ability of the SOM to accommodate skewed input data12 and capture 

information in the tails of the distribution was considered critical to understanding the range 

of dysglycemia in the sample. Finally, SOMs have strong visualization attributes to 

understanding complex, multivariate relationships and improve the validity of unsupervised 

learning.25,26

FLEX participants were mapped based on their eight CGM measures to a 5×5 square grid 

SOM with a Gaussian neighborhood function using the Package ‘SOMBrero’ in R version 

3.4.2.27 The dimensions of the SOM were selected based on the total sample size 24. 1000 

iterations (approximately 4.3 cycles through the full data) were run to ensure the shape of 
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the grid stabilized. Input data was randomized to produce a more reliable neighborhood 

structure. Additional analyses observed stability of the map across testing and training 

partitions. The final map was run on the full dataset to maximize statistical power.

The SOM was randomly initialized and re-run 10 times on the full data to check for 

consistency in parameters and quality criteria (see Supplementary Table S2). The best out of 

10 maps were selected based on the lowest quantization error, a measure of the average 

Euclidian distance between a participant’s CGM measures and the codebook vector of their 

assigned unit (Supplementary Material; Section 3). A hierarchical clustering algorithm was 

applied to the codebook vectors of the final map units using the function superclass in the 

SOMbrero package.28 The NbClust package in R guided the selection of the final number of 

clusters, with minimum and maximum number of clusters set to 1 and 10, respectively.29 

Clusters from the SOM were validated for internal validity, stability, and fidelity to the 

original data (Supplementary Material; Section 4.)

Baseline Characterization and Associations with Longitudinal Clinical 
Outcomes—The baseline correlates of each cluster were summarized using descriptive 

statistics. Skewed variables were assessed using non-parametric tests. Overall-tests of 

difference were carried out using ANOVA and chi-squared tests or Kruskal-Wallis and 

Fisher’s exact tests, where appropriate. Pairwise comparisons were performed via unpaired 

t-tests or Dunn’s test. To discern the significance of Dysglycemia Clusters versus subgroups 

defined by HbA1c, FLEX participants were also stratified by baseline HbA1c: (≤ or >75 

mmol/mol (8.0%)) and described in terms of their baseline characteristics. Significance 

differences across baseline HbA1c groups were tested using chi-squared tests and unpaired 

t-tests.

Mixed effect regression analysis was used to determine whether observed dysglycemia 

clusters show differential changes in HbA1c over 18-months. A main effect was fit for visit 

and cluster and a visit*cluster interaction term. Participants were treated as random effects to 

take into account the repeated measures. All models were adjusted for randomization status 

and site. Post-hoc comparisons by cluster were performed within each mixed model analysis 

and the effects were examined at each longitudinal timepoint in the FLEX study. Descriptive 

statistics and multilevel modeling (PROC MIXED) were conducted in SAS 9.4 (SAS 

Institute, Cary, NC).

Additional Statistical Considerations—SOM has been used previously to cluster 

small datasets, outperforming k-means on data of similar dimensions to the FLEX data 30. P-

values were evaluated at the 0.05 significance level and were not adjusted for multiple 

comparisons in the exploratory analysis.

Results

The final study sample included 234 adolescents with type 1 diabetes. Participants were 

76.1% non-Hispanic white and 50.0% female with mean age 14.8±1.1 years and mean 

diabetes duration was 6.4±3.7 years (Table 1). Mean HbA1c was 81±13 mmol/mol 
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(9.6±1.2%). Participants had blood glucose readings for a median of 160.0 hours (IQR 24.8) 

or approximately 6.7 days.

Figure 1A visualizes the 5×5 SOM grid, where individuals with similar CGM measures are 

assigned to proximal map units. Further visualizations are available in Supplementary Figure 

S3. Three clusters were identified, capturing areas of the map that were similar to each other 

with regards to the 8 CGM metrics (Figure 1B). All CGM metrics showed significantly 

different means and medians across clusters (p<0.001) (Table 2, Figure 1C). Cluster 1 

comprised 141 individuals (60.3%) and showed severe daytime hyperglycemia with low 

exposure to and incidence of hypoglycemia relative to other clusters. Cluster 1 also showed 

the lowest glycemic variability (mean (SD) daytime and nightime CV: 35.5% (6.4%) and 

35.7% (10.7%), respectively). Cluster 2 comprised 53 indiviudals (22.7%) and showed 

severe hyperglycemia, particularly overnight, with moderate hypoglycemia (median (IQR) 

daytime episodes: 4 (3)) and moderate variablity. Cluster 3 comprised 40 individuals 

(17.1%) and showed moderate hyperglycemia with the highest measures of hypoglycemia 

exposure and incidence relative to the other clusters (median (IQR) daytime episodes over 

the 7 days: 8 (5.5)). This group also showed the highest glycemic variability in the daytime 

and overnight (mean daytime and nightime CV: 4.1% (7.0%) and 51.7% (12.9%), 

respectively).

Mean baseline HbA1c was highest in Cluster 1 (85±14 mmol/mol (9.9±1.1%)) and lowest in 

Cluster 3 (72±9 mmol/mol (8.7%±0.8%)). In pairwise comparisons, Cluster 3 showed 

significant differences from Clusters 1 and 2 (p<0.001), but Clusters 1 and 2 did not show 

significant differences from each other (p=0.07). No other baseline characteristics were 

significantly different across clusters. There were differences in the correlates of subgroups 

defined by baseline HbA1c. Compared to participants with HbA1c ≤ 75 mmol/mol (9.0%) at 

baseline, participants with a high HbA1c showed lower insulin pump use (p=0.2), greater 

insulin doses (p=0.03), a higher frequency of blood glucose monitoring (p=0.004), lower 

motivation (p=0.03), and adherence to diabetes self-management (p=0.003).

HbA1c measures over 18-months were significantly different across clusters, adjusted for 

study site and randomization (p-for-interaction=0.006; Figure 2, Supplementary Table S5). 

Dysglycemia Clusters 1 and 2 showed stable mean HbA1c, while Dysglycemia Cluster 3 

showed significant increases over the 18-month study period (mean baseline HbA1c: 71 

mmol/mol (8.7%); mean HbA1c at 18-month visit: 81 mmol/mol (9.6%). There were no 

signifiant differences in mean HbA1c level at the 18-month visit (p=0.71). CGM metrics at 

the 18-month visit for each cluster are depicted in Supplementary Table S6.

Discussion

Using 7-day blinded CGM data from 234 adolescents with type 1 diabetes and elevated 

HbA1c, we identified three distinct, clinically-meaningful clusters sharing phenotypes 

defined by different exposure to and incidence of hypoglycemia, exposure to hyperglycemia, 

and glycemic variability. All eight CGM metrics were significantly different across clusters 

and can thus considered to be relevant for the clustering definition. Subgroups showed 

differences in baseline and longitudinal HbA1c. However, there were no other significant 
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differences in baseline characteristics according to dysglycemia cluster. These results 

reinforce the concept that adolescents with type 1 diabetes and elevated HbA1c do not show 

homogenous patterns in CGM-measures of blood glucose dynamics; this analytic approach 

can help refine understanding of dysglycemia patterns to better identify interventions. 

Interestingly, different patterns in dysglycemia are not explained by the individual 

sociodemographic, clinical, or psychosocial characteristics that typically drive treatment 

recommendations with regards to HbA1c.

To our knowledge, there is limited data available for comparison because the majority of 

existing CGM data collected in comparable age ranges are from adolescents with lower 

HbA1c levels.31 Patterns in dysglycemia across clusters are consistent with other CGM 

studies suggesting that a positive association between glycemic variability and the risk for 

hypoglycemia.32

A previous cluster analysis using 3-days of data from self-monitoring blood glucose values 

provided evidence for distinct glycemic profiles among a small sample of adults with type 1 

diabetes.33 Although all FLEX participants had elevated HbA1c as per inclusion criteria, we 

found similar evidence for the existence of subgroups typified by specific blood glucose 

dynamics. The striking differences in CGM measures suggest that these distinct 

‘phenotypes’ are comprised of adolescents who struggle with different aspects of their blood 

glucose control. For example, individuals in Cluster 1 were typified by hyperglycemia with 

fewer episodes of hypoglycemia and less pronounced variability, especially overnight, while 

individuals in Cluster 3 experienced less hyperglycemia but a median of 8 episodes of 

hypoglycemia per week with severe variability in the daytime and nighttime (mean CV: 47% 

and 52%, respectively). Measures of variability in the latter group greatly exceeded the CV 

threshold of 36% that has previously been proposed to indicate ‘unstable’ glycemia and 

increased risk for hypoglycemia.32

In the analysis to identify potential patient-related drivers of the clusters, there were no 

significant differences in the sociodemographic, clinical, or psychosocial measures across 

Dysglycemia Clusters. One possible reason for the lack of statistically significant correlates 

is the small sample size which may limit statistical power. We explored the clinical utility of 

a 2-cluster solution to detect differences but failed to identify significant correlates to 

distinguish the two subgroups (Supplementary Material, Section 6, Tables S7-S9).

Another interpretation of the data is that a broad range of demographic, clinical, or 

psychosocial characteristics do not drive the specific blood glucose issues that may be 

challenging overall glycemic control among adolescents with type 1 diabetes and elevated 

HbA1c. It is particularly interesting that the risk factors of poor glycemic control as it is 

measured by HbA1c do not appear to be risk factors for poor glycemic control as it 

manifests as membership in a Dysglycemia Cluster. Within the FLEX sample, participants 

with a high baseline HbA1c showed lower insulin pump use, greater insulin doses, a higher 

frequency of blood glucose monitoring, and lower motivation and adherence to diabetes self-

management; none of these associations emerged as correlates of Cluster membership. Other 

well-studied associations of suboptimal HbA1c measures in this age range were not 

replicated as differences across subgroups, including nonwhite race,34 lower measures of 
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socioeconomic position,35 and poorer psychosocial well-being.35 More work is needed to 

understand the drivers of dysglycemia phenotypes, including significant behavioral 

mediators or patterns that can be addressed clinically such as omitted or ill-timed boluses 

with regards to meal initiation.

There are several points of clinical relevance for the findings. Because the extraction of key 

clinical metrics from longitudinal CGM data emulates the process of patient care where 

these measures are used to identify specific issues,2 this study offers proof-of-principle for 

how CGM data may be consolidated and used to identify the subgroups of patients within a 

specific population of individuals with T1D that are be recognizable to care providers as 

intuitive clinical phenotypes. Such subgroup identification compliments the use of CGM 

data in individuals to measure time in range5,6 or average glucose exposure over a shorter 

period of time.7 CGM-derived subgroups may also act as prognostic phenotypes with 

different longitudinal trends in key clinical outcomes such as HbA1c. With increasing 

availability of CGM data as well as documentation of treatment regime and other outcomes 

in electronic health records, this work may in the future offer an emerging platform to pool 

data across one or more clinics to test how CGM clusters function as predictive or 

prescriptive phenotypes for treatment recommendations.

Outside of the clinic, the results may be used towards the development of effective 

interventions for this at-risk and challenging adolescent population.8,13 Although main 

analysis of the FLEX intervention did not show improvements in HbA1c at 18-months,13 a 

three-way interaction term between cluster, FLEX intervention randomization assignment, 

and timepoint was tested in exploratory longitudinal analyses; it was not statistically 

significant. It is possible that approaches to diabetes management in the heterogenous 

adolescent population are maximally effective as a set of interventions tailored to specific 

issues of dysglycemia, which can then be targeted towards phenotypes that are expected to 

maximally benefit. For example, Cluster 3 was the only subgroup to show an increase in 

HbA1c over 18-months; this subgroup also had the highest hypoglycemia and variability at 

baseline and may represent a previously-proposed sequela of recurrent hypoglycemia and 

overcorrection that leads to worsened glycemic control over time.36 Therefore, this group 

may benefit from specific efforts addressing frequent hypoglycemia and its overcorrection 

early in adolescence. By contrast, interventions focused on increasing insulin doses may be 

salient for Cluster 1, who spends most of the time in hyperglycemic ranges with low 

variability, rendering hypoglycemia counseling less immediately relevant.

A further aspect of clinical significance is the presumed differential risk for acute and 

chronic diabetes complications across clusters. Aside from well-established risk associated 

with hyperglycemia,9 the high degree of glycemic variability noted in Clusters 2 and 3 may 

confer additional, independent risk for micro- and macrovascular complications, including 

cardiovascular disease.3,4 Cluster 3’s pattern of hypoglycemia may contribute to the 

development of defective symptomatic responses, positioning these individuals at an 

increased risk for severe hypoglycemia.37

The analysis has several limitations. Self-organizing maps are difficult to validate. The SOM 

analysis was repeated to check for consistency, and resulting clusters were assessed for 
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stability and validity against other clustering algorithms on the raw data. Clusters showed 

stability in cross-validation studies with preservation of patterns in dysglycemia 

(Supplementary Table S3, Supplementary Figure S4). The results may be affected by the 

selection of the CGM metrics used to train the SOM. We explored dysglycemia clustering 

derived from a set of 16- and 24- CGM metrics and found that the recommended number of 

clusters and clustering solutions were not significantly impacted by additional CGM metrics, 

although the projection quality of the SOM was reduced (Supplementary Table S4). In 

addition, the SOM clusters were compared to clusters derived directly from the data.25 

Although the assumptions of the hierarchical clustering algorithm are not met using the 

input data, we found similar clusters with both algorithms (Supplementary Figure S5, 

Supplementary Figure S6). Together, the results suggest that the SOM clusters demonstrate 

internal validity, stability, and accurately represented clustering structure present in the raw 

data.

Additional limitations include availability of CGM data spanning 7 days versus the 14 days 

recommended for optimal data analysis;10 7 days of data may not be representative of long-

term deglycation. The small sample size may be underpowered to detect differences between 

clusters. The inclusion and exclusion criteria of the FLEX trial limit generalizability, 

particularly for adolescents with lower HbA1c levels. In the present analysis, we constrained 

CGM metrics to be consistent with standardized practices of CGM reporting.10 However, 

additional measures of glycemic variability such as mean amplitude of glycemic excursion 

(MAGE) and mean of daily differences (MODD) might help to further delineate subgroups. 

Future work may also explore how deep learning can be used to extract hidden layers of the 

CGM data and explore clusters based on those hidden layers.38

Despite the aforementioned limitations, here, we elucidated dysglycemia phenotypes among 

a sample of adolescents with type 1 diabetes and suboptimal glycemic control, a population 

with great need for future interventions in which CGM data has only recently become 

available to help.8,13 CGM metrics were selected to be consistent with best research 

practices,10 and a clustering algorithm was selected to leverage information from the tails of 

the distribution to understand underlying cluster structure in the data.12 The analytic 

approach is distinct from but compliments ongoing work to model CGM data via temporal 

analysis with regards to the shape of the curve/aspects of glycemic variability,39,40 and it 

may be applied to CGM data from variable durations of wear-time. In full, the study 

represents a novel use of CGM data towards broadening the concept of glycemic control 

from HbA1c to understanding a multifaceted profile that includes glycemic excursions and 

overall variability. Understanding of these subgroups is crucial to pave the way for targeted 

interventions to optimize dysglycemia and the associated clinical outcomes in type 1 

diabetes.

In conclusion, among adolescents with type 1 diabetes and elevated HbA1c, CGM data may 

be pooled and analyzed to uncover subgroups displaying distinct dysglycemia phenotypes, 

for which glycemic control is challenged by different patterns in hypoglycemia, 

hyperglycemia, and glycemic variability. More work is needed to understand the risk factors 

for glycemic control as it is represented from CGM data by dysglycemia phenotypes for 

future development of phenotype-specific interventions to improve glycemic control.
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Figure 1: Use of a Self-Organizing Map (SOM) trained by 7-day continuous glucose monitoring 
(CGM) data to identify Dysglycemia Clusters at baseline of the FLEX trial (n=234).
The clustering is carried out using a two-level approach, where the dataset is first clustered 

onto the units SOM and then the units SOM is clustered. A 5×5 SOM with 25 map units and 

a 3-cluster solution were selected. All CGM-variables were calculated for the 7-day wear 

time and were stratified by day (6:00 AM – 11:59 PM) and night (12:00 AM – 5:59 AM). 

Panel A: Radar plots showing the integrated CGM profile of each of the 25 units on the 
5×5 SOM, as determined by the individuals assigned to that region. Each input CGM 

variable is represented by a different color in the radar. Input CGM variables were defined as 

follows: Hypoglycemia Exposure: area-over-the-curve of 3.9 mmol/L (70 mg/dL), 
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Hypoglycemia Incidence: average number of hypoglycemic (<3.9 mmol/L (70 mg/dL)) 

episodes lasting 15 or more minutes, Hyperglycemia Exposure: area-under-the-curve of 13.9 

mmol/L (250 mg/dL), and Glycemic Variability: %CV. Panel B: The SOM colored by 
Dysglycemia Cluster assignments. Each unit was assigned to a Dyslgycemia Cluster. 

Dysglycemia Cluster assignments (Cluster 1, Cluster 2, and Cluster 3) are shown by colored 

boxes. Panel C: CGM measures of hypoglycemia, hyperglycemia, and glycemic 
variability across the 3 Dysglycemia Clusters. To aid in clinical interpretation of 

hypoglycemia and hyperglycemia exposure, the percent of time are depicted in place of the 

area-over-the-curve and area-under-the-curve measures that were used to construct the SOM. 

Data represents 7-days of blinded CGM wear. All p<0.001. Hypoglycemia Exposure is 

depicted as percent of time <3.9 mmol/L (70 mg/dL). Hypoglycemia Incidence is depicted 

as average number of hypoglycemic (<3.9 mmol/L (70 mg/dL)) episodes lasting 15 or more 

minutes. Hyperglycemia Exposure is depicted as percent of time >13.9 mmol/L (250 mg/

dL). Glycemic Variability is depicted as %CV. Abbreviations: CV – coefficient of variation.
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Figure 2: Longitudinal Hemoglobin A1c (HbA1c) outcomes of FLEX Participants by 
Dysglycemia Cluster, adjusted for FLEX study site and randomization assignment (p-for-
interaction = 0.006).
The p-for-interaction represents Type 3 Test of Fixed Effects for time point × cluster 

interaction term. Missing data— Baseline: n=0; 3-month HbA1c: n= 10; 6-month HbA1c: 

n= 14; 12-month HbA1c: n=20; 18-month HbA1c: n=16. p-values for each 

cluster*timepoint estimate (Cluster 1 vs Cluster 2, Cluster 1 vs Cluster 3): Baseline (p=0.89, 

p<0.0001); 3-month (p=0.23, p=0.08); 6-month (p=0.49, p=0.14), 18-month (p=0.03, 

p=0.85). Abbreviations: HbA1c – hemoglobin A1c.
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