351 research outputs found

    Characteristics and carbon stable isotopes of fluids in the Southern Kerala granulites and their bearing on the source of CO2

    Get PDF
    Carbon dioxide-rich inclusions commonly occur in the banded charnockites and khondalites of southern Kerala as well as in the incipient charnockites formed by desiccation of gneisses along oriented zones. The combined high density fluid inclusion isochores and the range of thermometric estimates from mineral assemblages indicate entrapment pressures in the range of 5.4 to 6.1 Kbar. The CO2 equation of state barometry closely compares with the 5 plus or minus 1 Kbar estimate from mineral phases for the region. The isochores for the high density fluid inclusions in all the three rock types pass through the P-T domain recorded by phase equilibria, implying that carbon dioxide was the dominating ambient fluid species during peak metamorphic conditions. In order to constrain the source of fluids and to evaluate the mechanism of desiccation, researchers undertook detailed investigations of the carbon stable isotope composition of entrapped fluids. Researchers report here the results of preliminary studies in some of the classic localities in southern Kerala namely, Ponmudi, Kottavattom, Manali and Kadakamon

    Stable isotope studies on granulites from the high grade terrain of Southern India

    Get PDF
    Fluid inclusion and petrologic characteristics of South India granulites and their bearing on the sources of metamorphic fluids are discussed. This paper served as a review and an introduction to the next paper by D. Jackson. Jackson presented carbon isotope data from gases extracted from fluid inclusions in South Indian granulites. The uniformly low Delta C-13 values (minus 10 plus or minus 2 per mil) and the greater abundance of CO2 in the incipient charnockites are suggestive of fluid influx from an externally buffered reservoir

    Effective mass and quantum lifetime in a Si/Si0.87Ge0.13/Si two-dimensional hole gas

    Get PDF
    Measurements of Shubnikov de Haas oscillations in the temperature range 0.3–2 K have been used to determine an effective mass of 0.23 m0 in a Si/Si0.87Ge0.13/Si two-dimensional hole gas. This value is in agreement with theoretical predictions and with that obtained from cyclotron resonance measurements. The ratio of the transport time to the quantum lifetime is found to be 0.8. It is concluded that the 4 K hole mobility of 11 000 cm2 V−1 s−1 at a carrier sheet density of 2.2×1011 cm−2 is limited by interface roughness and short-range interface charge scattering

    Methane in underground air in Gibraltar karst

    Get PDF
    AbstractLittle is known about the abundance and geochemical behaviour of gaseous methane in the unsaturated zone of karst terrains. The concentrations and δ13C of methane in background atmosphere, soil air and cave air collected at monthly intervals over a 4yr period are reported for St. Michaels Cave, Gibraltar, where the regional climate, surface and cave processes are well documented. Methane concentrations measured in Gibraltar soil are lower than the local background atmosphere average of 1868ppb and fall to <500ppb. The abundance–δ13C relationships in soil air methane lack strong seasonality and suggest mixing between atmosphere and a 12C depleted residue after methanotrophic oxidation. Methane abundances in cave air are also lower than the local background atmosphere average but show strong seasonality that is related to ventilation-controlled annual cycles shown by CO2. Cave air methane abundances are lowest in the CO2-rich air that outflows from cave entrances during the winter and show strong inverse relationship between CH4 abundance and δ13C which is diagnostic of methanotrophy within the cave and unsaturated zone. Anomalies in the soil and cave air seasonal patterns characterised by transient elevated CH4 mixing ratios with δ13C values lower than −47‰ suggests intermittent biogenic input. Dynamically ventilated Gibraltar caves may act as a net sink for atmospheric methane

    Triple oxygen isotopic composition of the high-<sup>3</sup>He/<sup>4</sup>He mantle

    Get PDF
    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth’s mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle − Δ17OHigh 3He/4He olivine = −0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O–87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source

    p-type delta-doped layers in silicon: structural and electronic properties

    Get PDF
    We report on the properties of p-type delta-doped layers prepared in molecular beam epitaxy-Si by growth interruption and evaporation of elemental B. Secondary-ion mass spectrometry measurements at several primary ion energies have been used to show that the full width at half maximum is ~2 nm. Hall measurements confirm that the layers are completely activated at 300 K with a mobility of 30±5 cm2/V s for a carrier density of (9±2)×1012 cm−2. At temperatures below 70 K nonmetallic behavior is observed which we have attributed to conduction between impurity states. It is concluded that the critical acceptor separation for the Mott metal-insulator transition in this system is significantly less than the value found in uniformly doped Si:B
    corecore