17,500 research outputs found

    Noether's Symmetry Theorem for Variational and Optimal Control Problems with Time Delay

    Get PDF
    We extend the DuBois-Reymond necessary optimality condition and Noether's symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether's theorem are proved, covering problems of the calculus of variations and optimal control with delays.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 15-March-201

    Local Density of States in Mesoscopic Samples from Scanning Gate Microscopy

    Full text link
    We study the relationship between the local density of states (LDOS) and the conductance variation ΔG\Delta G in scanning-gate-microscopy experiments on mesoscopic structures as a charged tip scans above the sample surface. We present an analytical model showing that in the linear-response regime the conductance shift ΔG\Delta G is proportional to the Hilbert transform of the LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and ΔG\Delta G. We analyze the physical conditions for the validity of this relationship both for one-dimensional and two-dimensional systems when several channels contribute to the transport. We focus on realistic Aharonov-Bohm rings including a random distribution of impurities and analyze the LDOS-ΔG\Delta G correspondence by means of exact numerical simulations, when localized states or semi-classical orbits characterize the wavefunction of the system.Comment: 8 pages, 8 figure

    Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

    Full text link
    We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev. Lett.: Editorially approved for publication 6 January 201

    Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties

    Full text link
    Numerical calculations illustrate the effect of the sign of the next nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model. Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown that introducing t' in the t-J model is equivalent to effectively renormalizing J, namely t' negative (positive) is equivalent to an effective t-J model with smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette toy model, and was observed also in calculations on small square clusters. Analyzing the transition probabilities of a hole-pair in the plaquette toy model, it is argued that the coherent propagation of such hole-pair is enhanced by a constructive interference between both t and t' for t'>0. This interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio

    Properties of magnetic nanodots with perpendicular anisotropy

    Full text link
    Nanodots with magnetic vortices have many potential applications, such as magnetic memories (VRAMs) and spin transfer nano-oscillators (STNOs). Adding a perpendicular anisotropy term to the magnetic energy of the nanodot it becomes possible to tune the vortex core properties. This can be obtained, e.g., in Co nanodots by varying the thickness of the Co layer in a Co/Pt stack. Here we discuss the spin configuration of circular and elliptical nanodots for different perpendicular anisotropies; we show for nanodisks that micromagnetic simulations and analytical results agree. Increasing the perpendicular anisotropy, the vortex core radii increase, the phase diagrams are modified and new configurations appear; the knowledge of these phase diagrams is relevant for the choice of optimum nanodot dimensions for applications. MFM measurements on Co/Pt multilayers confirm the trend of the vortex core diameters with varying Co layer thicknesses.Comment: 7 pages, 8 figure

    Permanent-magnets linear actuators applicability in automobile active suspensions

    Get PDF
    Significant improvements in automobile suspension performance are achieved by active systems. However, current active suspension systems are too expensive and complex. Developments occurring in power electronics, permanent magnet materials, and microelectronic systems justifies analysis of the possibility of implementing electromagnetic actuators in order to improve the performance of automobile suspension systems without excessively increasing complexity and cost. In this paper, the layouts of hydraulic and electromagnetic active suspensions are compared. The actuator requirements are calculated, and some experimental results proving that electromagnetic suspension could become a reality in the future are shown

    Hahn's Symmetric Quantum Variational Calculus

    Get PDF
    We introduce and develop the Hahn symmetric quantum calculus with applications to the calculus of variations. Namely, we obtain a necessary optimality condition of Euler-Lagrange type and a sufficient optimality condition for variational problems within the context of Hahn's symmetric calculus. Moreover, we show the effectiveness of Leitmann's direct method when applied to Hahn's symmetric variational calculus. Illustrative examples are provided.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 06-Sept-201

    Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna

    Get PDF
    Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion
    • …
    corecore