1,263 research outputs found

    The Dynamics and Metallicity Distribution of the Distant Dwarf Galaxy VV124

    Get PDF
    VV124 (UGC 4879) is an isolated, dwarf irregular/dwarf spheroidal (dIrr/dSph) transition-type galaxy at a distance of 1.36 Mpc. Previous low-resolution spectroscopy yielded inconsistent radial velocities for different components of the galaxy, and photometry hinted at the presence of a stellar disk. In order to quantify the stellar dynamics, we observed individual red giants in VV124 with the Keck/DEIMOS spectrograph. We validated members based on their positions in the color-magnitude diagram, radial velocities, and spectral features. Our sample contains 67 members. The average radial velocity is = −29.1 ± 1.3 km s^(−1), in agreement with the previous radio measurements of H I gas. The velocity distribution is Gaussian, indicating that VV124 is supported primarily by velocity dispersion inside a radius of 1.5 kpc. Outside that radius, our measurements provide only an upper limit of 8.6 km s^(−1) on any rotation in the photometric disk-like feature. The velocity dispersion is σ_v = 9.4± 1.0 km s^(−1), from which we inferred a mass of M_(1/2) = (2.1 ± 0.2)× 10^7 M_⊙ and a mass-to- light ratio of (M/L_V)_(1/2) = 5.2 ± 1.1 M_⊙/L_⊙, both measured within the half-light radius. Thus, VV124 contains dark matter. We also measured the metallicity distribution from neutral iron lines. The average metallicity, = −1.14 ± 0.06, is consistent with the mass-metallicity relation defined by dwarf spheroidal galaxies. The dynamics and metallicity distribution of VV124 appear similar to dSphs of similar stellar mass

    Trial Characteristics and Appropriateness of Statistical Methods Applied for Design and Analysis of Randomized School-Based Studies Addressing Weight-Related Issues: A Literature Review

    Get PDF
    Objective. To evaluate whether clustering effects, often quantified by the intracluster correlation coefficient (ICC), were appropriately accounted for in design and analysis of school-based trials. Methods. We searched PubMed and extracted variables concerning study characteristics, power analysis, ICC use for power analysis, applied statistical models, and the report of the ICC estimated from the observed data. Results. N = 263 papers were identified, and N = 121 papers were included for evaluation. Overall, only a minority (21.5%) of studies incorporated ICC values for power analysis, fewer studies (8.3%) reported the estimated ICC, and 68.6% of studies applied appropriate multilevel models. A greater proportion of studies applied the appropriate models during the past five years (2013-2017) compared to the prior years (74.1% versus 63.5%, p = 0.176). Significantly associated with application of appropriate models were a larger number of schools (p = 0.030), a larger sample size (p = 0.002), longer follow-up (p = 0.014), and randomization at a cluster level (p < 0.001) and so were studies that incorporated the ICC into power analysis (p = 0.016) and reported the estimated ICC (p = 0.030). Conclusion. Although application of appropriate models has increased over the years, consideration of clustering effects in power analysis has been inadequate, as has report of estimated ICC. To increase rigor, future school-based trials should address these issues at both the design and analysis stages

    Effect of metabolosome encapsulation peptides on enzyme activity, co-aggregation, incorporation and bacterial microcompartment formation

    Get PDF
    Metabolosomes, catabolic bacterial microcompartments, are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multi-component protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation prior to the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variation with respect to enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self-assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides

    Multi-Element Abundance Measurements from Medium-Resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies

    Get PDF
    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effective yields of the less luminous half of our galaxy sample do not exceed 0.02 Z_sun, indicating that gas outflow is important in the chemical evolution of the less luminous galaxies. We surmise that the ratio of the importance of gas infall to gas outflow increases with galaxy luminosity. Strong correlations of average [Fe/H] and metallicity spread with luminosity support this hypothesis.Comment: 17 pages, 5 figures; accepted for publication in ApJ; minor corrections in v3; corrected typographical errors in Tables 1 and 3 in v

    Biomarker Testing to Estimate Under-Reported Heavy Alcohol Consumption by Persons with HIV Initiating ART in Uganda

    Get PDF
    Alcohol affects the transmission and treatment of HIV, yet may be under-reported in resource-limited settings. We compared self-reported alcohol consumption with levels of plasma carbohydrate-deficient transferrin (%CDT), a biomarker of heavy alcohol consumption, in persons initiating antiretroviral therapy in Uganda. Almost seven percent (6.7%) of persons reporting abstaining and 10% reporting consuming 1–40 drinks in the prior month tested positive for %CDT, and actual under-report may be higher due to low sensitivity of %CDT. These results suggest likely under-report in those reporting abstaining and current drinking. Improved identification of heavy alcohol consumption is needed for research and clinical purposes

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    Abundance Analysis of HE2148-1247, A Star With Extremely Enhanced Neutron Capture Elements

    Get PDF
    Abundances for 27 elements in the very metal poor dwarf star HE2148-1247 are presented, including many of the neutron capture elements. We establish that HE2148-1247 is a very highly s-process enhanced star with anomalously high Eu as well, Eu/H about half Solar, demonstrating the large addition of heavy nuclei at [Fe/H] = -2.3 dex. Ba and La are enhanced by a somewhat larger factor and reach the solar abundance, while Pb significantly exceeds it. Ba/Eu is ten times the solar r-process ratio but much less than that of the s-process, indicating a substantial r-process addition as well. C and N are also very highly enhanced. We have found that HE2148-1247 is a radial velocity variable. The C, N and the s-process element enhancements thus presumably were produced through mass transfer from a former AGB binary companion. The large enhancement of heavy r-nuclides also requires an additional source as this is far above any inventory in the ISM at such low [Fe/H]. We further hypothesize that accretion onto the white dwarf from the envelope of the star caused accretion induced collapse of the white dwarf, forming a neutron star, which then produced heavy r-nuclides and again contaminated its companion. (abridged)Comment: Accepted by the Astrophysical Journal. Companion paper by Qian and Wasserburg follow

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal
    corecore