245 research outputs found

    A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics.

    Get PDF
    Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually any POC setting. When combined with LAMP, our approach provides sample-to-result detection in under 35 minutes

    A dual-sensing thermo-chemical ISFET array for DNA-based diagnostics.

    Get PDF
    This paper presents a 32x32 ISFET array with in-pixel dual-sensing and programmability targeted for on-chip DNA amplification detection. The pixel architecture provides thermal and chemical sensing by encoding temperature and ion activity in a single output PWM, modulating its frequency and its duty cycle respectively. Each pixel is composed of an ISFET-based differential linear OTA and a 2-stage sawtooth oscillator. The operating point and characteristic response of the pixel can be programmed, enabling trapped charge compensation and enhancing the versatility and adaptability of the architecture. Fabricated in 0.18 μm standard CMOS process, the system demonstrates a quadratic thermal response and a highly linear pH sensitivity, with a trapped charge compensation scheme able to calibrate 99.5% of the pixels in the target range, achieving a homogeneous response across the array. Furthermore, the sensing scheme is robust against process variations and can operate under various supply conditions. Finally, the architecture suitability for on-chip DNA amplification detection is proven by performing Loop-mediated Isothermal Amplification (LAMP) of phage lambda DNA, obtaining a time-to-positive of 7.71 minutes with results comparable to commercial qPCR instruments. This architecture represents the first in-pixel dual thermo-chemical sensing in ISFET arrays for Lab-on-a-Chip diagnostics

    The effect of nodal connectivity and strut density within stochastic titanium scaffolds on osteogenesis

    Get PDF
    Modern orthopaedic implants use lattice structures that act as 3D scaffolds to enhance bone growth into and around implants. Stochastic scaffolds are of particular interest as they mimic the architecture of trabecular bone and can combine isotropic properties and adjustable structure. The existing research mainly concentrates on controlling the mechanical and biological performance of periodic lattices by adjusting pore size and shape. Still, less is known on how we can control the performance of stochastic lattices through their design parameters: nodal connectivity, strut density and strut thickness. To elucidate this, four lattice structures were evaluated with varied strut densities and connectivity, hence different local geometry and mechanical properties: low apparent modulus, high apparent modulus, and two with near-identical modulus. Pre-osteoblast murine cells were seeded on scaffolds and cultured in vitro for 28 days. Cell adhesion, proliferation and differentiation were evaluated. Additionally, the expression levels of key osteogenic biomarkers were used to assess the effect of each design parameter on the quality of newly formed tissue. The main finding was that increasing connectivity increased the rate of osteoblast maturation, tissue formation and mineralisation. In detail, doubling the connectivity, over fixed strut density, increased collagen type-I by 140%, increased osteopontin by 130% and osteocalcin by 110%. This was attributed to the increased number of acute angles formed by the numerous connected struts, which facilitated the organization of cells and accelerated the cell cycle. Overall, increasing connectivity and adjusting strut density is a novel technique to design stochastic structures which combine a broad range of biomimetic properties and rapid ossification

    Binding site plasticity in viral PPxY Late domain recognition by the third WW domain of human NEDD4

    Get PDF
    The recognition of PPxY viral Late domains by the third WW domain of the HECT-E3 ubiquitin ligase NEDD4 (hNEDD4-WW3) is essential for the completion of the budding process of numerous enveloped viruses, including Ebola, Marburg, HTLV1 or Rabies. hNEDD4-WW3 has been validated as a promising target for the development of novel host-oriented broad spectrum antivirals. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. We present here a detailed structural and thermodynamic study of the interactions of hNEDD4-WW3 with viral Late domains combining isothermal titration calorimetry, NMR structural determination and molecular dynamics simulations. Structural and energetic differences in Late domain recognition reveal a highly plastic hNEDD4-WW3 binding site that can accommodate PPxY-containing ligands with varying orientations. These orientations are mostly determined by specific conformations adopted by residues I859 and T866. Our results suggest a conformational selection mechanism, extensive to other WW domains, and highlight the functional relevance of hNEDD4-WW3 domain conformational flexibility at the binding interface, which emerges as a key element to consider in the search for potent and selective inhibitors of therapeutic interest.This research has been financed by grants BIO2009-13261-C02, BIO2012-39922-CO2 and BIO2016-78746-C2-1-R from the Spanish Ministry of Education and Science (I.L.) including AEI/FEDER EU funds, by CTQ2017-83810-R grant (F.J.B) and by BFU2014-53787-P, the IRB Barcelona and the BBVA Foundation (M.J.M)

    Allele-Specific Isothermal Amplification Method Using Unmodified Self-Stabilizing Competitive Primers.

    Get PDF
    Rapid and specific detection of single nucleotide polymorphisms (SNPs) related to drug resistance in infectious diseases is crucial for accurate prognostics, therapeutics and disease management at point-of-care. Here, we present a novel amplification method and provide universal guidelines for the detection of SNPs at isothermal conditions. This method, called USS-sbLAMP, consists of SNP-based loop-mediated isothermal amplification (sbLAMP) primers and unmodified self-stabilizing (USS) competitive primers that robustly delay or prevent unspecific amplification. Both sets of primers are incorporated into the same reaction mixture, but always targeting different alleles; one set specific to the wild type allele and the other to the mutant allele. The mechanism of action relies on thermodynamically favored hybridization of totally complementary primers, enabling allele-specific amplification. We successfully validate our method by detecting SNPs, C580Y and Y493H, in the Plasmodium falciparum kelch 13 gene that are responsible for resistance to artemisinin-based combination therapies currently used globally in the treatment of malaria. USS-sbLAMP primers can efficiently discriminate between SNPs with high sensitivity (limit of detection of 5 × 101 copies per reaction), efficiency, specificity and rapidness (<35 min) with the capability of quantitative measurements for point-of-care diagnosis, treatment guidance, and epidemiological reporting of drug-resistance

    Amplification curve analysis: Data-driven multiplexing using real-time digital PCR

    Get PDF
    Information about the kinetics of PCR reactions are encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from realtime dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188) which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of co-amplification in dPCR based on multivariate Poisson statistics, and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step towards maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven multiplexing with high accuracy. Furthermore, we expect that combining this method with existing probe-based assays will increase multiplexing capabilities significantly. We envision that once emerging point-of-care technologies can reliably capture real-time data from isothermal chemistries, the ACA method will facilitate the implementation of dPCR outside of the lab

    Structural basis of a redox-dependent conformational switch that regulates the stress kinase p38α

    Full text link
    Many functional aspects of the protein kinase p38α have been illustrated by more than three hundred structures determined in the presence of reducing agents. These structures correspond to free forms and complexes with activators, substrates, and inhibitors. Here we report the conformation of an oxidized state with an intramolecular disulfide bond between Cys119 and Cys162 that is conserved in vertebrates. The structure of the oxidized state does not affect the conformation of the catalytic site, but alters the docking groove by partially unwinding and displacing the short αD helix due to the movement of Cys119 towards Cys162. The transition between oxidized and reduced conformations provides a mechanism for fine-tuning p38α activity as a function of redox conditions, beyond its activation loop phosphorylation. Moreover, the conformational equilibrium between these redox forms reveals an unexplored cleft for p38α inhibitor design that we describe in detail.© 2023. The Author(s)

    PASANTÍAS DE INVESTIGACIÓN BIOMÉDICA Y SU IMPORTANCIA EN PRE-GRADO

    Get PDF
    La adherencia de investigación en la formación médica es capaz de atender la demanda de una sociedad en constante evolución, dando como resultado profesionales con capacidad creativa y analitica donde tomen decisiones basadas en la investigación científica para el bien de la salud individual y colectiva1. La información científica fluye a una velocidad nunca antes vista y la medicina es parte de esta tendencia mundial. Día a día se publican decenas de artículos en diferentes revistas y bases de datos, los que continúan alimentando el conocimiento médico. Por lo tanto, se considera indispensable para la construcción de nuevas realidades invertir en programas de educación médica2. Las pasantías universitarias y profesionales en investigación, son una opción curricular importante diseñadas para expandir la profundidad y amplitud del aprendizaje académico en un área particular de estudio, el Informe de Generation Opportunity “State of the Millennial Report” indica que los 81.1% de los graduados que completan tres o más pasantías tienen más probabilidades de obtener un empleo de tiempo completo, planteando que las pasantías generan un tránsito identitario del pasante con la experiencia. &nbsp; DOI: 10.25176/RFMH.v18.n2.129

    The effect of nodal connectivity and strut density within stochastic titanium scaffolds on osteogenesis

    Get PDF
    Modern orthopaedic implants use lattice structures that act as 3D scaffolds to enhance bone growth into and around implants. Stochastic scaffolds are of particular interest as they mimic the architecture of trabecular bone and can combine isotropic properties and adjustable structure. The existing research mainly concentrates on controlling the mechanical and biological performance of periodic lattices by adjusting pore size and shape. Still, less is known on how we can control the performance of stochastic lattices through their design parameters: nodal connectivity, strut density and strut thickness. To elucidate this, four lattice structures were evaluated with varied strut densities and connectivity, hence different local geometry and mechanical properties: low apparent modulus, high apparent modulus, and two with near-identical modulus. Pre-osteoblast murine cells were seeded on scaffolds and cultured in vitro for 28 days. Cell adhesion, proliferation and differentiation were evaluated. Additionally, the expression levels of key osteogenic biomarkers were used to assess the effect of each design parameter on the quality of newly formed tissue. The main finding was that increasing connectivity increased the rate of osteoblast maturation, tissue formation and mineralisation. In detail, doubling the connectivity, over fixed strut density, increased collagen type-I by 140%, increased osteopontin by 130% and osteocalcin by 110%. This was attributed to the increased number of acute angles formed by the numerous connected struts, which facilitated the organization of cells and accelerated the cell cycle. Overall, increasing connectivity and adjusting strut density is a novel technique to design stochastic structures which combine a broad range of biomimetic properties and rapid ossification

    Rapid detection of mobilized colistin resistance using a nucleic acid based lab-on-a-chip diagnostic system

    Get PDF
    The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr−9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr−9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr−9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times of 6.83 ± 0.92 min for positive isolates (n = 14). All experiments detected mcr−9 in under 10 min, and both platforms showed no statistically significant difference (p-value > 0.05). When sample preparation and throughput capabilities are integrated within this LoC platform, the adoption of this technology for the rapid detection and surveillance of antimicrobial resistance genes will decrease the turnaround time for DNA detection and resistotyping, improving diagnostic capabilities, patient outcomes, and the management of infectious diseases
    corecore