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Abstract
Information about the kinetics of PCR reac-
tions are encoded in the amplification curve.
However, in digital PCR (dPCR), this infor-
mation is typically neglected by collapsing each
amplification curve into a binary output (posi-
tive/negative). Here, we demonstrate that the
large volume of raw data obtained from real-
time dPCR instruments can be exploited to per-
form data-driven multiplexing in a single fluo-
rescent channel using machine learning meth-
ods, by virtue of the information in the amplifi-
cation curve. This new approach, referred to as
amplification curve analysis (ACA), was shown
using an intercalating dye (EvaGreen), reduc-
ing the cost and complexity of the assay and
enabling the use of melting curve analysis for
validation. As a case study, we multiplexed 3
carbapenem-resistant genes to show the impact
of this approach on global challenges such as
antimicrobial resistance. In the presence of sin-
gle targets, we report a classification accuracy
of 99.1% (N = 16188) which represents a 19.7%
increase compared to multiplexing based on the
final fluorescent intensity. Considering all com-

binations of amplification events (including co-
amplifications), the accuracy was shown to be
92.9% (N = 10383). To support the analysis,
we derived a formula to estimate the occurrence
of co-amplification in dPCR based on multi-
variate Poisson statistics, and suggest reducing
the digital occupancy in the case of multiple
targets in the same digital panel. The ACA
approach takes a step towards maximizing the
capabilities of existing real-time dPCR instru-
ments and chemistries, by extracting more in-
formation from data to enable data-driven mul-
tiplexing with high accuracy. Furthermore, we
expect that combining this method with exist-
ing probe-based assays will increase multiplex-
ing capabilities significantly. We envision that
once emerging point-of-care technologies can re-
liably capture real-time data from isothermal
chemistries, the ACA method will facilitate the
implementation of dPCR outside of the lab.
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Introduction
Digital PCR (dPCR) is a well-established
method to detect and quantify nucleic acids.1,2
It is based on the amplification of single target
DNA/RNA molecules in many separate reac-
tion wells. This approach offers several advan-
tages over conventional real-time PCR (qPCR),
such as: (1) lack of references or standards;
(2) high precision in quantification; (3) toler-
ance to inhibitors; and (4) the capability to
analyze complex mixtures.3–5 Therefore, dPCR
has enabled scientific breakthroughs in cancer
biomarker discovery, genetic alterations and in-
fectious diseases, among others.6–8
As the need for high throughput analysis

of multiple targets continues to escalate, sev-
eral approaches have been proposed to simul-
taneously detect and quantify multiple nucleic
acids. Microfluidic solutions offer spatial mul-
tiplexing by subdividing the reaction into an
increasing number of partitions.9 Alternatively,
multiplex dPCR assays can rely on the use of
fluorescent probes (e.g. TaqMan) using mul-
tiple channels. The probe concentration can
be optimized to increase the number of tar-
gets per channel by changing the final fluores-
cent intensity (FFI).10 However, probes are ex-
pensive and require time-consuming optimiza-
tion.11 To achieve similar multiplexing capa-
bilities, dye-based approaches (e.g. EvaGreen)
have also been proposed, which alter primer
concentration, changing the PCR efficiency and
impacting the FFI.12 Furthermore, instruments
with melting capabilities, such as Fluidigm’s
BioMark HD, can be used to perform melting
curve analysis (MCA) when using intercalating
dyes. The melting peak, Tm, is extracted to
distinguish targets,13 although more recently
methods based on machine learning have also
been proposed.14 To the best of our knowledge,
there has been no report of multiplexing using
the entire amplification curve in dPCR.
Recently, in qPCR it was shown that suffi-

cient information exists within the amplifica-
tion curve so as to distinguish several targets
using multidimensional standard curves.15,16
However, since the volume of data from qPCR
is limited (< 102 reactions per experiment), ex-

plicit features of the amplification curve were
extracted to perform reliable multiplexing in a
single-channel. In this study, we combined real-
time single-molecule digital PCR using an in-
tercalating dye and machine learning models,
to prove that sufficient kinetic information ex-
ists in the amplification curve to perform data-
driven multiplexing - referred to as amplifica-
tion curve analysis (ACA). We use MCA as the
“gold standard” to assess the performance of the
proposed method, as illustrated in the experi-
mental workflow depicted in Figure 1. We take
advantage of the volume of raw data extracted
from real-time dPCR (> 104 reactions per ex-
periment) and the high likelihood of single-
molecule events in order to develop machine
learning models, without explicitly extracting
features of the amplification curve or compro-
mising the assay performance (by modifying
probe or primer concentration). Moreover, we
normalize for the FFI, to show that this method
can be combined with current approaches for
dPCR multiplexing - breaking the barrier of 1
target for each level of FFI (in a given fluores-
cent channel). We also provide a theoretical
derivation for the likelihood of multiple targets
in a single well (i.e. co-amplification) in order
to understand the effect of this phenomenon on
quantification and multiplexing.
As a clinically relevant application, we ap-

ply this methodology to the global challenge
of antimicrobial resistance.17 In particular,
we focused on carbapenemases, which are β-
lactamases (bla) that are resistant to the car-
bapenems, a class of highly effective antibi-
otic agents.18 Therefore, we developed a mul-
tiplex assay for the detection of 3 common
carbapenem-resistant genes, namely blaNDM,
blaVIM and blaKPC.
Our vision for this work is three-fold: (1)

maximize the capabilities of existing instru-
ments and chemistries by extracting more in-
formation from existing data; (2) combine
this approach with existing probe-based meth-
ods to increase multiplexing capabilities signif-
icantly; and (3) translate this methodology to
isothermal chemistries and emerging point-of-
care technologies to facilitate the implementa-
tion of dPCR outside of the lab.19
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Figure 1: Experimental workflow. A multiplex PCR assay (with an intercalating dye) is developed for detecting
targets A, B and C. Real-time digital PCR is used to perform single-molecule amplification to detect the targets.
Melting curve analysis is used to validate the specificity of the amplification product. The output of real-time
dPCR is a sequence of images, from which the time-series of the amplification and melting curves can be extracted.
Subsequently, supervised machine learning using the amplification curves, referred to as amplification curve analysis,
can be used to distinguish the targets, and melting curve analysis can be used to evaluate the performance.

Experimental Section

DNA Templates

We used double-stranded synthetic DNA
(gBlock Gene fragments) containing blaNDM,
blaVIM and blaKPC gene sequences (ranging
from 801 to 917 bp). The sequences of
these genes were downloaded from the Gen-
Bank web site (http://www.ncbi.nlm.nih.
gov/genbank/) with accession numbers of
NC_023908, NC_023274 and NC_014312 for
blaNDM, blaVIM and blaKPC, respectively. These
genes belong to the class B metalloenzymes
encoding blaNDM and blaVIM, plus the class A
carbapenemases encoding blaKPC type. They
were purchased from Life Technologies and re-
suspended in Tris-EDTA buffer to 10 ng/µL
stock solutions (stored at −80 ◦C until further
use). The concentrations of all DNA stock
solutions were determined using a Qubit 3.0
fluorimeter (Life Technologies).

PCR Primer Design

Primers for the multiplex assay were designed
to target the aforementioned referenced se-
quences. For each gene of interest, 1000 se-
quences were retrieved from NCBI blast (in-
silico), to identify all the possible inclusive

targets and exclude potential cross-reactivity
sequences. Alignments were performed us-
ing the MUSCLE algorithm,20 in Geneious
Prime® 2020.1.2 (https://www.geneious.
com).21 Primer characteristics were analyzed
through the IDT OligoAnalyzer software us-
ing the J.SantaLucia thermodynamic table for
melting temperature (Tm) evaluation, hairpin,
self-dimer and cross-primer formation.22 The
Tm of the amplification product of each primer
set was determined by the Melting Curve Pre-
dictions Software (uMELT) package (https:
//dna-utah.org/umelt/umelt.html).23 All
primers were synthesized by Life Technologies.
Primer sequences are listed in Table 1.

PCR Reaction Conditions

Real-time PCR.

Each amplification reaction was performed in
10 µL of final volume with 5 µL of SsoFast Eva-
Green Supermix with Low ROX (BioRad, UK),
3 µL of PCR grade water, 1 µL of 10× multi-
plex PCR primer mixture containing the three
primer sets (5 µM of each primer), and 1 µL of
different concentrations of synthetic DNA (or
controls). PCR amplifications consisted of 10
min at 95 ◦C, followed by 45 cycles at 95 ◦C for
20s, 65 ◦C for 45s, and 72 ◦C for 30s. In order to
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Table 1: Primer Specification

Target Primer Sequence Amplicon
Name (5’–3’) size (bp)

blaNDM NDM-F CACACCAGTGACAATATCACCGTTG 85
NDM-R ACTTGGCCTTGCTGTCCTTGAT

blaVIM VIM-F CTTCGGTCCAGTAGAACTCT 258
VIM-R GTGTGCTTGAGCAAGTCT

blaKPC KPC-F TCGAACAGGACTTTGGCG 202
KPC-R GGAACCAGCGCATTTTTGC

Primers have been developed in this study.

validate the proposed method, the results were
compared against melting curve analysis. Melt-
ing curve analysis was performed with one cycle
at 65 ◦C for 60s, and reading from 65 to 97 ◦C
with an increment of 0.5 ◦C. The PCR machine
used in this study was the Light Cycler 96 Real-
Time PCR System (Roche Diagnostics).

Real-time Digital PCR.

Each amplification reaction was performed in
4 µL of final volume with 2 µL of SsoFast Eva-
Green Supermix with Low ROX (BioRad, UK),
0.4µL of 20× GE Sample Loading Reagent
(Fluidigm PN 85000746), 0.3 µL of PCR grade
water, 0.2µL of 20× multiplex PCR primer
mixture containing the three primer sets (10 µM
of each primer), and 1.2 µL of different concen-
trations of synthetic DNA (or controls). PCR
amplifications consisted of a hot start step for
10 min at 95 ◦C, followed by 45 cycles at 95 ◦C
for 20s, 65 ◦C for 45s, and 72 ◦C for 30s. The re-
sults were validated using MCA which was per-
formed with one cycle at 65 ◦C for 3s and read-
ing from 65 to 97 ◦C with an increment of 0.5 ◦C.
We used the integrated fluidic circuit (IFC) con-
troller to prime and load qdPCR 37K™ digital
chips and Fluidigm’s Biomark HD system to
perform the dPCR experiments, following man-
ufacturer’s instructions. More specifically, each
digital chip contains 48 inlets, where each in-
let is connected a panel consisting of 770 wells
(0.85nL well volume).24 In this study, we used
3 digital chips, totalling 144 panels, including
negative controls.

Data Analysis

Multiple in-house Python (v3.7) scripts were
developed to extract and analyze the data using
standard data science packages (e.g. NumPy,
Pandas and Scikit-Learn). Complete details
of the code can be found at www.github.com/
am5113/pyACA. All graphics are made us-
ing the Matplotlib package and optimized for
color blindness.25 The logistic regression and k-
nearest neighbour models were implemented us-
ing the scikit-learn package with default param-
eters (for more information please see provided
code and package documentation). The classi-
fication accuracy (i.e. proportion of correctly
identified events), sensitivity (i.e. true positive
rate) and specificity (i.e. true negative rate)
values in Table 1 and 2 were computed for each
binary classification sub-problem in the one-vs-
one multi-class classification scheme.

Results and Discussion
In this paper, it is shown, for the first time,
that data-driven multiplexing can be achieved
by ACA at the single-molecule level using inter-
calating dyes, by only considering the amplifi-
cation curve. The following section is struc-
tured as follows. First, the challenges of qPCR
multiplexing in the presence of multiple tar-
gets are illustrated, which motivate the use of
dPCR. Second, the limitation of dPCR multi-
plexing based on final fluorescent intensity is
demonstrated, highlighting the need to extract
more information from the amplification curve
for high-level multiplexing. Subsequently, this
kinetic information is visualized in the entire
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amplification curve using unsupervised machine
learning. This enables the use of supervised
machine learning to perform data-driven mul-
tiplexing - called amplification curve analysis.
Therefore, the performance of ACA in the pres-
ence of single and multiple targets is assessed,
and the impact of co-amplification in dPCR us-
ing multivariate Poisson statistics is explored.

Challenges of qPCR multiplexing
in the presence of multiple targets
in a single reaction

Performing multiplexing in a single fluorescent
channel using intercalating dyes presents a ma-
jor challenge since the measured fluorescence
is proportional to all double-stranded DNA
produced in the reaction. To this end, sev-
eral methods analyze the amplification prod-
uct through approaches such as melting curve
analysis and gel electrophoresis in order to dis-
tinguish the targets from each other (and from
non-specific products). In general, the presence
of multiple targets in the same reaction is ei-
ther neglected because it is a rare event or it
is solved through lengthy and expensive opti-
mization to reliably distinguish the amplifica-
tion products.10,26
First, we developed a 3-plex assay for the de-

tection of blaNDM, blaVIM and blaKPC. Figure 2
(A) shows the amplification curves and melting
peaks for each target at concentrations ranging
from 5 × 103 to 1 × 106 copies/reaction. Ob-
serve the melting peaks for blaNDM, blaVIM and
blaKPC can be distinguished from each other
and are given as 84.7◦C, 88.5◦C and 89.7◦C re-
spectively. Moreover, Figure 2 (B) shows the
corresponding standard curves illustrating the
Cq value as a function of the target concen-
tration, yielding an assay efficiency of 80.5%,
88.6% and 92.2% for targets blaNDM, blaVIM and
blaKPC, respectively.
Typically, a single value, i.e. Tm, is used

to identify the specificity of the melting peak.
However, information is also contained in the
width of the melting peaks (due to GC con-
tent and amplicon length).27 In the co-presence
of multiple targets in a single reaction, the

width is important since it defines the abil-
ity to resolve two peaks. For example, Fig-
ure 2 (C) shows the amplification curves for
the co-presence of targets and Figure 2 (D)
shows the corresponding melting curves. It
can be observed that the blaNDM+blaKPC and
blaNDM+blaVIM peaks are sufficiently different
in order to identify 2 distinct peaks in the melt-
ing profile. However, the mixture containing
blaVIM+blaKPC results in only a single peak.
This is also observed in the mixture with all
3 targets as only 2 peaks are evident. This
may suggest there are fewer amplification prod-
ucts. Through adding the pure melting pro-
files, we can estimate the ‘expected’ melting
curve for mixtures of products, as in Figure 2
(E). Observe that for blaVIM and blaKPC, the
expected melting curve only predicts a single
peak. This demonstrates the uncertainty as
to whether the single peak contains 1 or more
products - representing one of the major chal-
lenges with using MCA for multiplexing in the
presence of more than one target. Therefore, we
are forced to run post PCR analysis techniques
such as gel electrophoresis or sequencing. Fig-
ure 2 (F) shows the gel electrophoresis image for
the same reactions as above. It can be observed
that each reaction contains the same number of
bands as the expected number of targets at the
correct amplicon length (see Experimental Sec-
tion). Although gel electrophoresis can resolve
the multiple products, it is time-consuming, in-
creases the risk of contamination and is imprac-
tical for many applications due to the protocol
and components of the gel.28
Recently, it was shown that kinetic informa-

tion in the amplification curve can be used
to multiplex without the need for melting
curve analysis or gel electrophoresis using mul-
tidimensional standard curves.15,16 However,
this work did not explore the presence of co-
amplification and explicit features of the ampli-
fication curve were extracted due to the limited
amount of data in qPCR.
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A) Amplification and Melting Curves (Pure)

B) Standard Curves (Pure)

C) Amplification Curves (Mixtures)

D) Empirical Melting Curves (Mixtures)

E) Expected Melting Curves (Mixtures)

F) Gel Electrophoresis (Pure + Mixtures)

1 2 3 4 5 6 7 1 - blaVIM
2 - blaNDM
3 - blaKPC
4 - blaNDM+ blaVIM
5 - blaVIM+ blaKPC
6 - blaNDM+ blaKPC
7 - blaNDM+ blaVIM + blaKPC100bp

200bp

500bp

300bp

1000bp

blaNDM blaVIM blaKPC

blaNDM blaVIM blaKPC

N
or

m
al

ize
d 

F.
N

or
m

al
ize

d 
F.

Cycles

Temperature (℃)Temperature (℃)Temperature (℃)Temperature (℃)

Cycles Cycles Cycles

DNA (copies/reaction)

CyclesCyclesCycles

Temperature (℃)Temperature (℃)Temperature (℃)Temperature (℃)

blaNDM
+ blaKPC

blaNDM
+ blaVIM

+ blaKPC

blaNDM
+ blaVIM

blaVIM
+ blaKPC

-d
F

/ d
T

-d
F

/ d
T

Cq

blaNDM
+ blaKPC

blaNDM
+ blaVIM

+ blaKPC

blaNDM
+ blaVIM

blaVIM
+ blaKPC

blaNDM
+ blaKPC

blaNDM
+ blaVIM

+ blaKPC

blaNDM
+ blaVIM

blaVIM
+ blaKPC

DNA (copies/reaction) DNA (copies/reaction)

Figure 2: Real-time PCR Experiments showing the performance of a 3-plex assay in the presence of single and
multiple targets. (A) Amplification curves for single targets (in a single reaction) with corresponding melting curves,
where six different dilutions were used ranging from 5× 103 to 1× 106 copies/reaction. (B) Corresponding standard
curves correlating the Cq values with the concentration of each target. (C) Amplification curves for the co-presence
of targets and (D) respective empirical melting curves. (E) Prediction of melting curves for co-presence of targets:
solid lines indicate single target meltings; dashed line is an estimation of the expected melting curve for mixture of
products. (F) Gel electrophoresis image of each reaction type.
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Real-time dPCR Multiplexing
based on Melting Curve Analysis

The aforementioned limitations motivate the
use of real-time dPCR as a method of mul-
tiplexing for two main reasons: (1) the vast
number of partitions reduce the likelihood of co-
amplification in a single reaction significantly;
and (2) the large volume of data enables the
use of advanced machine learning algorithms to
detect subtle kinetic differences encoded in the
amplification curves.
Here, we translate the 3-plex assay from

qPCR to real-time dPCR. First, we investi-
gate the multiplex assay in the presence of pure
targets in each digital panel. Figure 3 (A)
and (B) show the digital pattern and ampli-

fication curves for a serial dilution of the tar-
gets. Concentrations ranging from 5 × 103 to
1 × 106 copies/reaction were chosen such that
we observe amplification events in both single-
molecule and bulk regions in order to capture
kinetic information in both domains. In to-
tal, there were 36960 amplification events with
16188 positive reactions: blaNDM (N = 4589),
blaVIM (N = 5682) and blaKPC (N = 5917).
It is interesting to observe the Cq values as a
function of the target concentration as seen in
Figure 3 (C) since there is a clear separation
between the single-molecule and the bulk re-
gions. In the bulk region, the panels are satu-
rated and therefore the target can be quantified
using a standard curve (as in qPCR), whereas
the low concentrations form a digital pattern

D) Melting Curves

C) Time-to-Positive

B) Amplification Curves

A) Digital Patterns
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Figure 3: Real-time dPCR data. (A) Digital patterns for each panel at increasing concentrations. (B) Amplification
curves for serial dilution of each target at concentrations ranging from 5×103 to 1×106 copies/reaction. (C) Standard
curves correlating the Cq values with the concentration of each target; shaded blue area indicates single-molecule
region; shaded orange shows the bulk region; and the middle area displays the transition between single-molecule
and bulk. (D) Normalized distribution of the melting curve peaks, i.e. Tm, for each target. All data presented in
this figure were conducted in a single digital experiment.
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that can be quantified using Binomial and Pois-
son statistics.3 Moreover, it is observed that
the assay efficiency in digital PCR is 129.0%,
93.4% and 98.2% for target blaNDM, blaVIM and
blaKPC respectively. This is a 48.5%, 4.8% and
6.0% increase compared to qPCR, which is ex-
pected due to several factors such as: less inhi-
bition and high local concentration.3–5 Figure 3
(D) shows the distribution of the melting curve
peaks (Tm) for each target. The maximum
likelihood value of Tm for blaNDM, blaVIM and
blaKPC is 84.8◦C, 88.6◦C and 89.9◦C, respec-
tively. All Tm values are within 0.2◦C of their
respective qPCR quantities. The width of the
distributions are related to the resolution of the
measurements. To obtain a manageable volume
of data from the dPCR platform, a resolution
of 0.5◦C was used for the melting curve analy-
sis. Based on this, we can determine the bounds
for which to distinguish the targets by consider-
ing the 1st and 99th percentile. The lower and
upper bounds for blaNDM, blaVIM and blaKPC

were computed as (84.1◦C, 86.0◦C), (88.1◦C,
89.3◦C) and (89.4◦C, 91.8◦C) respectively.

Real-time dPCR Multiplexing us-
ing Final Fluorescent Intensity

In the literature, the current method of mul-
tiplexing with intercalating dyes in dPCR is
based on differentiating the final fluorescent in-
tensity (FFI) between the targets.26 Figure 4
(A) shows the raw amplification curves with
background subtraction. The associated FFI
for each amplification event is shown in Fig-
ure 4 (B). It can be observed that there is an
overlap between the distributions of FFI for
the 3 targets. Based on these values, a ma-
chine learning model can be trained to learn
the optimal boundaries to distinguish the tar-
gets. The dashed red lines, T1 and T2, show the
thresholds learned using a Logistic Regression
classifier. Based on this classifier, the overall
classification accuracy is computed as 79.42%,
which is not adequate for many applications.
This value is computer on the entire dataset
(N=16188) based on 10-fold cross-validation.
More specifically, we train the model on 14569
data points and test on the remaining 1619.

This process is repeated 10 times to provide the
confusion matrix in Figure 4 (B) and details of
the one-vs-one classifiers (which are combined
to form the multi-class model) in Table 2. It
can be observed that accurate multiplexing can
be achieved for blaNDM vs blaKPC or blaNDM vs
blaVIM, however the blaVIM and blaKPC are not
separable, compromising the entire 3-plex. This
demonstrates the need for optimizing the re-
action conditions (e.g. primer concentration)
in order to obtain reasonable accuracy for 3 or
more targets, due to the large variation of FFI
values.

blaNDM blaVIM blaKPC

blaNDM blaVIM blaKPC

Fl
uo

re
sc

en
ce

Cycles Cycles Cycles

Fi
na

l F
lu

or
es

ce
nt

 In
te

ns
ity

 (F
FI

)

Event Number

A) Raw Amplification Curves

B) Final Fluorescent Intensity

Tr
ue

 (M
CA

)

Predicted (FFI)

Acc: 79.42%

Figure 4: Multiplexing based on final fluorescent in-
tensity. (A) Raw amplification curves with background
subtraction. (B) Distribution of FFI values across the 3
targets. The red dashed lines (T1 and T2) indicate the
thresholds generated from a Logistic Regression method
for target classification. The predictions are shown in
the overlay confusion matrix. Amplification events are
ordered from low to high concentration.
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Table 2: Final Fluorescent Intensity Classifica-
tion Performance

Classifier Acc. Sens. Spec.
blaNDM vs blaVIM 98.2% 97.3% 99.0%
blaNDM vs blaKPC 99.5% 99.3% 99.6%
blaVIM vs blaKPC 72.9% 71.0% 74.9%
Acc = Accuracy, Sens = Sensitivity, Spec = Speci-
ficity.

Information in the Amplification
Curve

The findings above suggest that more infor-
mation than the FFI is needed. The MCA
clearly encoded this information since it is able
to distinguish the 3 targets in dPCR. How-
ever, for a single digital chip, the melting
data required 1.7Gb extra memory (at just
0.5◦C resolution) in addition to the 1.1Gb re-
quired for the amplification data, translating to
more time for acquisition & processing. More-
over, the MCA method cannot be extended to
chemistries which are not compatible such as
TaqMan assays or non-fluorescence based sens-
ing. Therefore, in this study, we aim to ex-
plore a new method of multiplexing through
the use of machine learning to extract specific
kinetic information directly from the amplifi-
cations curve. First, we use unsupervised ma-
chine learning in order to visualize the com-
plex interaction from cycle to cycle, by embed-
ding the high dimensional amplification curves
(i.e. 40 cycles) into a visualizable low dimen-
sional space (e.g. 2 or 3). That is, amplifica-
tion curves which are more similar are mapped
to points which are close in lower-dimensional
space. This can be achieved using the t-
distributed stochastic neighbor embedding (t-
SNE) algorithm, which has the ability to pre-
serve local structure.29 It is important to un-
derstand that t-SNE is an unsupervised learn-
ing algorithm and therefore does not use the
target labels. Figure 5 illustrates the t-SNE al-
gorithm (perplexity=500) applied to the ampli-
fication curves with each target colored for visu-
alization purposes. It can be observed that the
different targets fall in a different region of this
embedding and can therefore be distinguished

automatically using statistical machine learn-
ing. Therefore, we demonstrate that even after
normalizing for fluorescent intensity, the kinetic
information which is encoded in the amplifica-
tion curve can provide sufficient information to
perform data-driven multiplexing. Moreover, it
is interesting to observe that the region indi-
cated within the dashed red circle shows ampli-
fication curves which do not fully plateau, and
therefore are similar across the 3 targets. This
suggests that the entire curve is necessary to
extract sufficient kinetic information.

blaVIM

blaKPC
blaNDM

Figure 5: Visualizing the similarity between amplifica-
tion curves using the t-distributed stochastic neighbor
embedding algorithm with 2 components. Direction of
arrows indicate high to low concentration. Dashed red
circle indicates curves that have not reached plateau.

Amplification Curve Analysis:
Data-Driven Multiplexing using
Supervised Machine Learning

After establishing that information exists in the
amplification curve using unsupervised meth-
ods, supervised learning methods can be used to
exploit this information to perform multiplex-
ing. Several machine learning algorithms exist
for classification tasks such as k-nearest neigh-
bors, support vector machines and deep neural
networks.30–32 The following section is demon-
strated using the k-nearest neighbors algorithm
which is a non-parametric method that is intu-
itive.33 In order to assess the performance of
this new form of data-driven multiplexing, re-
ferred to in this report as amplification curve

9



analysis, four questions were answered:

1. What is the performance of ACA in the
presence of single targets?

2. How much data is required to perform ac-
curate ACA multiplexing?

3. What is the performance of ACA in the
presence of multiple targets?

4. What is the impact of co-amplification
events on ACA?

Performance in the presence of a single
target

Melting curve analysis can be used as the “gold
standard” to evaluate the performance of ACA.
The data presented in Figure 3 can be used to
estimate the out-of-sample (or test) accuracy
in the presence of a single target using 10-fold
cross-validation. Figure 6 (A) shows the pre-
diction accuracy in a confusion matrix for the
k-NN algorithm (for k = 10). The dark green
squares indicate the single-target true positive
classifications. The overall classification accu-
racy was 99.09% (CI: 99.08-99.09%). Moreover,
the accuracy, sensitivity and specificity for the
one-vs-one classifiers are given in Table 3. This
result demonstrates that all 3 targets can be ac-
curately distinguished from each other. More-
over, these results show the high concordance
between MCA and ACA, suggesting that the
amplification curve contains more information
than commonly presumed. Compared to the
FFI method, the overall classification accuracy
was increased from 79.4% to 99.1%, represent-
ing a 19.7% increase in performance. Once
again, this highlights the need to optimize the
assay for the FFI method, which can be chal-
lenging in many applications.

Table 3: ACA Classification Performance

Classifier Acc. Sens. Spec.
blaNDM vs blaVIM 99.8% 99.9% 99.7%
blaNDM vs blaKPC 99.7% 99.9% 99.5%
blaVIM vs blaKPC 99.1% 99.1% 99.0%
Acc = Accuracy, Sens = Sensitivity, Spec = Speci-
ficity.

Volume of data required for accurate
multiplexing

The volume of data required for training has
significant practical implications in order to ob-
tain high test performance whilst reducing the
number of experiments. Figure 6 (B) shows the
test accuracy for 1000 samples as a function of
the number of training samples. This was com-
puted through bootstrapping 100 times using
a stratified shuffle split. As expected, as the
number of training data increases, the out-of-
sample performance increases. More interest-
ingly, with as little as 100 training samples, the
performance is at 95%, and increases to 98%
before 1000 training samples.

Performance in the presence of multiple
targets

Although theoretically with sufficient num-
ber of wells the challenges of multiple targets
are mitigated, in reality the likelihood of co-
amplification exists. Moreover, from a practical
perspective, the training data is conducted in a
different experiment to the test data, raising
the possibility of inter-experiment variations.
In this section, we use the previous data as the
training samples and run a different experiment
which contains all possible combinations of the
targets.
Figure 6 (C) illustrates the number of pos-

itives for each panel class, as determined by
MCA and ACA. The dashed red boxes illustrate
the co-amplification events. In total, 228 co-
amplification events were observed. Moreover,
the shaded boxes indicate the events where we
expect co-amplifications to occur, but MCA is
not able to detect due to the merging melt-
ing peaks discussed previously. Furthermore, it
can be observed that compared to MCA, some
of the panels show misclassified reactions using
ACA. More specifically, observing each ampli-
fication event at the single-molecule level inde-
pendently, the overall predictions of ACA are
described in the confusion matrix illustrated in
Figure 6 (D). The overall classification accuracy
(including the co-amplification events indicated
by the dashed red line) is computed as 92.9%.
However, only considering pure events yields an
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co-amplification

Figure 6: Performance of ACA in the presence of single and multiple targets. (A) Confusion matrix showing the
predictions of ACA compared with MCA in the presence of single targets; (B) The effect of training size (with pure
targets) on the train/test performance; (C) Matrices displaying the prediction of MCA and ACA per panel type;
(D) Confusion matrix showing the predictions of ACA compared with MCA in the presence of multiple targets;
(E) The effect of training size (with all combinations of targets) on the train/test performance. The data collected
and analysed in this figure were conducted in 3 digital experiments on separate days. The confidence intervals were
computed by bootstrapping 100 times using a stratified shuffle split and taking the standard deviation of the values.
The analysis in A and B consisted of panels with varying digital occupancies, ranging from empty to saturated
panels. All co-amplification experiments in C, D and E, showed digital patterns (with λ’s ranging from 0.2 to 1.6).

accuracy of 95.0%. Figure 6 (E) displays the
accuracy for both, pure and all, amplification
events as a function of the volume of training
data. It can be observed the accuracy plateaus
within 1000 training samples. The error due
to the co-amplification events can be mitigated
further by increasing the number of wells (or
equivalently decreasing the digital occupancy).

Understanding the impact of co-
amplification events

Quantification in dPCR is performed based on
Binomial & Poisson statistics in order to es-
timate the number of molecules taking into
account the probability of double, triple, etc.
events.3 This analysis assumes that the DNA

molecules are independently and uniformly dis-
tributed across the digital array. The advan-
tage of dPCR is that the accuracy of the quan-
tification can be estimated using the confidence
interval in the Poisson parameter estimation.
Figure 7 (A) shows the quantification precision
as a function of the occupancy (based on the
Wilson confidence interval). It can be observed
that the optimal occupancy across all m is ap-
proximately 80% or λ = 1.6 (marked with a
cross). However, an acceptable range of digital
occupancy can be defined according the desired
accuracy for a given application. For example,
under the constraint of m = 36960 (number
of wells in a Fluidigm® 37K chip), the uncer-
tainty is below 5% between 16.7% occupancy
(λ = 0.2, marked with a circle) and 99.3% oc-
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cupancy (λ = 5.0, marked with a square).
Here, we extend the Poisson statistics to de-

rive a formula to estimate the theoretical num-
ber of wells with more than one target, i.e. wells
that represent a challenge for ACA. The proba-
bility that k molecules fall within a well can be
described by the Poisson distribution given by

p(k) =
λke−λ

k!
(1)

λ =
n

m
(2)

Where n is the number of DNA molecules and
m is the number of wells. Let p(k) denote
p(k1, . . . , kK), the joint probability distribution
of having ki molecules from target i in each
well (where K is the number of targets). Under
the independence assumption, the joint distri-
bution can be given as

p(k) = p(k1) . . . p(kK) (3)

=
K∏
i=1

p(ki) (4)

The proportion of co-amplification, denoted by
PC , is defined as having more than 1 target in
a well. Or equivalently, it is defined as 1 −
P0 − P1 where P0 is the probability of having
no targets and P1 is the probability of having a
single or multiple molecules of the same target.
Therefore, using equation (3)-(4), P0 and P1 are
given as

P0 =
K∏
i=1

p(ki = 0) (5)

P1 =
K∑
j=1

p(kj > 0)

p(kj = 0)

K∏
q=1

p(kq = 0) (6)

Substituting equation (1) into the above and
using the identity p(k > 0) = 1 − p(k = 0)
yields

PC = 1−
K∏
i=1

e−λi︸ ︷︷ ︸
P0

−
K∑
j=1

(eλj − 1)
K∏
q=1

e−λq︸ ︷︷ ︸
P1

(7)
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Figure 7: The impact of co-amplification events. (A)
The relative uncertainty of Poisson quantification as a
function of λ and the number of wells. (B) The prob-
ability of co-amplification in the presence of 2 targets.
(C) The effect of the number of targets on the worst-
case probability of co-amplification.

Which can be simplified to

PC = 1− e−λ
(
1 +

K∑
j=1

(eλj − 1)
)

(8)

where λ =
K∑
i=1

λi (9)

Using this formula, we can estimate the theo-
retical error introduced by co-amplifications. In
the ideal scenario, as the number of wells tends
to infinity, i.e. m → ∞, then λ → 0, there-
fore P0 → 1 and P1 → 0, resulting in PC → 0.
This demonstrates the error in ACA due to co-
amplifications tend to zero as the number of
wells increases. Figure 7 (B) shows the pro-
portion of co-amplification events for two tar-
gets (A and B) as a function of λA and λB.
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It can be observed that an increase in the total
λ = λA+λB, causes an increase in the likelihood
of co-amplification events. Moreover, the worst-
case scenario is experienced when λA = λB as
marked with a dashed red line. The shaded re-
gion indicates the range of λ’s between 0.4 and
1.6. Therefore, the intersection of the shaded
region and the worst-case scenario shows 30.3%
for λ = 1.6 and 0.8% for λ = 0.2. Figure 7
(C) shows the worst-case co-amplification pro-
portion as a function of the number of targets.
For 3 targets, we can decrease PC from 37.1%
down to 1.2% by reducing λ to 0.2. Moreover,
the error starts to plateau (for all λ) above 6
targets. In fact, as the number of targets tends
to infinity, PC is equivalent to the probability of
wells with more than 1 molecule independently
of the number of targets. That is,

lim
K→∞

PC = 1− e−λ − λe−λ (10)

Contrary to single target Poisson quantifica-
tion, to maximize ACA multiplexing perfor-
mance, λ should be decreased without compro-
mising quantification significantly. However, in
a realistic scenario, the sample concentration is
not known beforehand. Therefore, this analy-
sis is intended to be used after an experiment,
such that the user can estimate how much er-
ror may be present in the results due to co-
amplification - similar to the quantification pre-
cision (i.e. confidence interval) when perform-
ing Poisson statistics.

Conclusion
To the best of our knowledge, no published
study has reported dPCR (or droplet dPCR)
multiplexing by considering the kinetic infor-
mation encoded in the entire amplification
curve. By leveraging the large volume of
single-molecule data in real-time dPCR, we re-
port a new data-driven method using super-
vised machine learning, referred to as amplifica-
tion curve analysis, or ACA. We validated this
approach for 3 drug-resistant genes: blaNDM,
blaVIM and blaKPC, by comparing to melting
curve analysis as the “ground truth”. Although

MCA is not ideal due to merging of peaks, it
remains the only post PCR method to validate
dPCR amplification products.
The results show that in the presence of sin-

gle targets, the accuracy of ACA is 99.1% when
training and testing within a digital experi-
ment. This represents an improvement of 19.7%
compared to the conventional method of mul-
tiplexing based on the final fluorescent inten-
sity. Furthermore, when training and testing
across experiments, we observed an accuracy of
95.0%. However, this promising performance
was reduced to 92.9% due to the presence of
co-amplification in a single well. To support
the analysis, we derived a formula to estimate
the occurrence of co-amplification and suggest
reducing the digital occupancy in the case of
multiple targets in the same digital panel. This
work raises several questions to for future stud-
ies: (1) How robust is the ACAmethod to varia-
tions in reaction conditions? (2) Can we extend
ACA to perform higher-level multiplexing by
considering the final fluorescent intensity? (3)
Can we translate this method to probe-based
or pH-based methods? (4) Can we classify co-
amplification and non-specific products?
This paper showed the high concordance be-

tween MCA and ACA, suggesting that the
amplification curve contains more informa-
tion than commonly presumed. We expect
that combining ACA with existing probe-based
methods will increase multiplexing capabili-
ties significantly. Moreover, translating this
methodology to isothermal chemistries and
point-of-care technologies, such as ISFET ar-
rays and SlipChip, will facilitate the implemen-
tation of real-time dPCR outside of the lab.34–40
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