81 research outputs found

    Arginine 125 is an essential residue for the function of MRAP2

    Get PDF
    MRAP2 is a small simple transmembrane protein arranged in a double antiparallel topology on the plasma membrane. It is expressed in the paraventricular nucleus of the hypothalamus, where it interacts with various G protein-coupled receptors, such as the prokineticin receptors, and regulates energy expenditure and appetite. The aim of this work was to analyze the functional role of the specific arginine residue at position 125 of MRAP2, which affects protein conformation, dimer formation, and PKR2 binding. Results obtained with the MRAP2 mutants R125H and R125C, which are found in human patients with extreme obesity, and mouse MRAP2, in which arginine 125 is normally replaced by histidine, were compared with those obtained with human MRAP2. Understanding the mechanism by which MRAP2 regulates G protein-coupled receptors helps in elucidating the metabolic pathways involved in metabolic dysfunction and in developing new drugs as specific targets of the MRAP2-PKR2 complex

    Abnormal Pain Sensation in Mice Lacking the Prokineticin Receptor PKR2: Interaction of PKR2 with Transient Receptor Potential TRPV1 and TRPA1

    Get PDF
    The amphibian Bv8 and the mammalian prokineticin 1 (PROK1) and 2 (PROK2) are new chemokine-like protein ligands acting on two G protein-coupled receptors, prokineticin receptor 1 (PKR1) and 2 (PKR2), participating to the mediation of diverse physiological and pathological processes. Prokineticins (PKs), specifically activating the prokineticin receptors (PKRs) located in several areas of the central and peripheral nervous system associated with pain, play a fundamental role in nociception. In this paper, to improve the understanding of the prokineticin system in the neurobiology of pain, we investigated the role of PKR2 in pain perception using pkr2 gene-deficient mice. We observed that, compared to wildtype, pkr2-null mice were more resistant to nociceptive sensitization to temperatures ranging from 46 to 48 \ub0C, to capsaicin and to protons, highlighting a positive interaction between PKR2 and the non-selective cation channels TRPV1. Moreover, PKR2 knock-out mice showed reduced nociceptive response to cold temperature (4 \ub0C) and to mustard oil-induced inflammatory hyperalgesia, suggesting a functional interaction between PKR2 and transient receptor potential ankyrin 1 ion (TRPA1) channels. This notion was supported by experiments in dorsal root ganglia (DRG) cultures from pkr1 and\u2013pkr2-null mice, demonstrating that the percentage of Bv8-responsive DRG neurons which were also responsive to mustard oil was much higher in PKR1 12/ 12 than in PKR2 12/ 12 mice. Taken together, these findings suggest a functional interaction between PKR2 and TRP channels in the development of hyperalgesia. Drugs able to directly or indirectly block these targets and/or their interactions may represent potential analgesics

    Prokineticin 2 upregulation in the peripheral nervous system has a major role in triggering and maintaining neuropathic pain in the chronic constriction injury model

    Get PDF
    The new chemokine Prokineticin 2 (PROK2) and its receptors (PKR1 and PKR2) have a role in inflammatory pain and immunomodulation. Here we identified PROK2 as a critical mediator of neuropathic pain in the chronic constriction injury (CCI) of the sciatic nerve in mice and demonstrated that blocking the prokineticin receptors with two PKR1-preferring antagonists (PC1 and PC7) reduces pain and nerve damage. PROK2 mRNA expression was upregulated in the injured nerve since day 3 post injury (dpi) and in the ipsilateral DRG since 6 dpi. PROK2 protein overexpression was evident in Schwann Cells, infiltrating macrophages and axons in the peripheral nerve and in the neuronal bodies and some satellite cells in the DRG. Therapeutic treatment of neuropathic mice with the PKR-antagonist, PC1, impaired the PROK2 upregulation and signalling. This fact, besides alleviating pain, brought down the burden of proinflammatory cytokines in the damaged nerve and prompted an anti-inflammatory repair program. Such a treatment also reduced intraneural oedema and axon degeneration as demonstrated by the physiological skin innervation and thickness conserved in CCI-PC1 mice. These findings suggest that PROK2 plays a crucial role in neuropathic pain and might represent a novel target of treatment for this disease

    High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors

    Get PDF
    Background: Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. Methods: C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. Results: HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. Conclusions: HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity

    Halogenated triazinediones behave as antagonists of PKR1: in vitro and in vivo pharmacological characterization

    No full text
    Different prokineticin receptor antagonists, based on the triazinedione scaffold, were synthesized by a new efficient method. Here we demonstrated that 5-benzyltriazinedionessubstituted in position para of the benzyl group with halogens provide compounds endowed with interesting selectivity for the Prokineticin receptor 1 (PKR1). BRET technology indicates that such substitutionresults in increased affinity for thePKR1.The affinity for PKR2, always in M range, was never significantly affected by the para-halogen-benzyl pharmacophores. The analog bearing a para-bromobenzyl pharmacophore (PC-25) displayed the highest affinity for PKR1 (~18 times higher than the reference PC-1 that bears apara-ethyl benzyl group) and the highest selectivity (~300 times). The other halogen substitutedanalogs (PC-7, PC-18 and PC-35), showed selectivity for PKR1 more than 100 times higher than for PKR2. Using transgenic mice lacking one of the two PKRs we demonstrated that all these compounds were able to abolish the Bv8-induced hyperalgesia in mice still expressing the PKR1 at doses lower than those necessary to abolish hyperalgesia in mice expressing only the PKR2. The dose ratio reflected the in- vitro evaluated receptor selectivity

    Catching more offenders with EvoFIT facial composites: Lab research and Police field trials.

    Get PDF
    Often, the only evidence of an offender’s identity comes from the memory of an eyewitness. For over 12 years, we have been developing software called EvoFIT to help eyewitnesses recover their memories of offenders’ faces, to assist police investigations. EvoFIT requires eyewitnesses to repeatedly select from arrays of faces, with ‘breeding’, to ‘evolve’ a face. Recently, police forces have been formally evaluating EvoFIT in criminal cases. The current paper describes four such police audits. It is reported that EvoFIT composites directly led to an arrest in 25.4% of cases overall; the arrest rate was 38.5% for forces that used a newer, less detailed face-recall interview. These results are similar to those found in the laboratory using simulated procedures. Here, we also evaluate the impact of interviewing techniques and outline further work that has improved system performance

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Recurrent SARS-CoV-2 mutations in immunodeficient patients

    Get PDF
    Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted. © The Author(s) 2022. Published by Oxford University Press

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
    corecore