422 research outputs found

    Effectiveness of a single-session early psychological intervention for children after road traffic accidents: a randomised controlled trial

    Get PDF
    BACKGROUND: Road traffic accidents (RTAs) are the leading health threat to children in Europe, resulting in 355,000 injuries annually. Because children can suffer significant and long-term mental health problems following RTAs, there is considerable interest in the development of early psychological interventions. To date, the research in this field is scarce, and currently no evidence-based recommendations can be made. METHODS: To evaluate the effectiveness of a single-session early psychological intervention, 99 children age 7-16 were randomly assigned to an intervention or control group. The manualised intervention was provided to the child and at least one parent around 10 days after the child's involvement in an RTA. It included reconstruction of the accident using drawings and accident-related toys, and psychoeducation. All of the children were interviewed at 10 days, 2 months and 6 months after the accident. Parents filled in questionnaires. Standardised instruments were used to assess acute stress disorder (ASD), posttraumatic stress disorder (PTSD), depressive symptoms and behavioural problems. RESULTS: The children of the two study groups showed no significant differences concerning posttraumatic symptoms and other outcome variables at 2 or at 6 months. Interestingly, analyses showed a significant intervention x age-group effect, indicating that for preadolescent children the intervention was effective in decreasing depressive symptoms and behavioural problems. CONCLUSIONS: This study is the first to show a beneficial effect of a single-session early psychological intervention after RTA in preadolescent children. Therefore, an age-specific approach in an early stage after RTAs may be a promising way for further research. Younger children can benefit from the intervention evaluated here. However, these results have to be interpreted with caution, because of small subgroup sizes. Future studies are needed to examine specific approaches for children and adolescents. Also, the intervention evaluated here needs to be studied in other groups of traumatised children. TRIAL REGISTRATION: Clinical Trial Registry: ClinicalTrials.gov: NCT00296842

    New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.

    Get PDF
    PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females

    Malaria risk and access to prevention and treatment in the paddies of the Kilombero Valley, Tanzania

    Get PDF
    Background: The Kilombero Valley is a highly malaria-endemic agricultural area in south-eastern Tanzania. Seasonal flooding of the valley is favourable to malaria transmission. During the farming season, many households move to distant field sites (shamba in Swahili) in the fertile river floodplain for the cultivation of rice. In the shamba, people live for several months in temporary shelters, far from the nearest health services. This study assessed the impact of seasonal movements to remote fields on malaria risk and treatment-seeking behaviour. Methods: A longitudinal study followed approximately 100 randomly selected farming households over six months. Every household was visited monthly and whereabouts of household members, activities in the fields, fever cases and treatment seeking for recent fever episodes were recorded. Results: Fever incidence rates were lower in the shamba compared to the villages and moving to the shamba did not increase the risk of having a fever episode. Children aged 1-4 years, who usually spend a considerable amount of time in the shamba with their caretakers, were more likely to have a fever than adults (odds ratio = 4.47, 95 confidence interval 2.35-8.51). Protection with mosquito nets in the fields was extremely good (98 antimalarials was uncommon. Despite the long distances to health services, 55.8 health facility, while home-management was less common (37 17.4-50.5). Conclusion: Living in the shamba does not appear to result in a higher fever-risk. Mosquito nets usage and treatment of fever in health facilities reflect awareness of malaria. Inability to obtain drugs in the fields may contribute to less irrational use of drugs but may pose an additional burden on poor farming households. A comprehensive approach is needed to improve access to treatment while at the same time assuring rational use of medicines and protecting fragile livelihoods

    Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light

    Get PDF
    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms

    Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

    Get PDF
    “Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface

    Virtual environments as memory training devices in navigational tasks for older adults.

    Get PDF
    Cognitive training approaches using virtual environments (VEs) might counter age-related visuospatial memory decline and associated difficulties in wayfinding. However, the effects of the visual design of a VE in route learning are not fully understood. Therefore, we created a custom-designed VE optimized for route learning, with adjusted levels of realism and highlighted landmark locations (MixedVE). Herein we tested participants' route recall performance in identifying direction of turn at the intersection with this MixedVE against two baseline alternatives (AbstractVE, RealisticVE). An older vs. a younger group solved the tasks in two stages (immediate vs. delayed recall by one week). Our results demonstrate that the MixedVE facilitates better recall accuracy than the other two VEs for both age groups. Importantly, this pattern persists a week later. Additionally, our older participants were mostly overconfident in their route recall performance, but the MixedVE moderated this potentially detrimental overconfidence. Before the experiment, participants clearly preferred the RealisticVE, whereas after the experiment, most of the younger, and many of the older participants, preferred the MixedVE. Taken together, our findings provide insights into the importance of tailoring visualization design in route learning with VEs. Furthermore, we demonstrate the great potential of the MixedVE and by extension, of similar VEs as memory training devices for route learning, especially for older participants

    Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.

    Get PDF
    The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices

    What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications

    Get PDF
    Since Böhler published the first categorization of spinal injuries based on plain radiographic examinations in 1929, numerous classifications have been proposed. Despite all these efforts, however, only a few have been tested for reliability and validity. This methodological, conceptual review summarizes that a spinal injury classification system should be clinically relevant, reliable and accurate. The clinical relevance of a classification is directly related to its content validity. The ideal content of a spinal injury classification should only include injury characteristics of the vertebral column, is primarily based on the increasingly routinely performed CT imaging, and is clearly distinctive from severity scales and treatment algorithms. Clearly defined observation and conversion criteria are crucial determinants of classification systems’ reliability and accuracy. Ideally, two principle spinal injury characteristics should be easy to discern on diagnostic images: the specific location and morphology of the injured spinal structure. Given the current evidence and diagnostic imaging technology, descriptions of the mechanisms of injury and ligamentous injury should not be included in a spinal injury classification. The presence of concomitant neurologic deficits can be integrated in a spinal injury severity scale, which in turn can be considered in a spinal injury treatment algorithm. Ideally, a validation pathway of a spinal injury classification system should be completed prior to its clinical and scientific implementation. This review provides a methodological concept which might be considered prior to the synthesis of new or modified spinal injury classifications
    corecore