62 research outputs found
Treatment- and Population-Dependent Activity Patterns of Behavioral and Expression QTLs
Genetic control of gene expression and higher-order phenotypes is almost invariably dependent on environment and experimental conditions. We use two families of recombinant inbred strains of mice (LXS and BXD) to study treatment- and genotype-dependent control of hippocampal gene expression and behavioral phenotypes. We analyzed responses to all combinations of two experimental perturbations, ethanol and restraint stress, in both families, allowing for comparisons across 8 combinations of treatment and population. We introduce the concept of QTL activity patterns to characterize how associations between genomic loci and traits vary across treatments. We identified several significant behavioral QTLs and many expression QTLs (eQTLs). The behavioral QTLs are highly dependent on treatment and population. We classified eQTLs into three groups: cis-eQTLs (expression variation that maps to within 5 Mb of the cognate gene), syntenic trans-eQTLs (the gene and the QTL are on the same chromosome but not within 5 Mb), and non-syntenic trans-eQTLs (the gene and the QTL are on different chromosomes). We found that most non-syntenic trans-eQTLs were treatment-specific whereas both classes of syntenic eQTLs were more conserved across treatments. We also found there was a correlation between regions along the genome enriched for eQTLs and SNPs that were conserved across the LXS and BXD families. Genes with eQTLs that co-localized with the behavioral QTLs and displayed similar QTL activity patterns were identified as potential candidate genes associated with the phenotypes, yielding identification of novel genes as well as genes that have been previously associated with responses to ethanol
Relationship Between Language and Concept Science Notebook Scores of English Language Learners and/or Economically Disadvantaged Students
Despite research interest in testing the effects of literacy-infused science interventions in different contexts, research exploring the relationship, if any, between academic language and conceptual understanding is scant. What little research exists does not include English language learners (ELLs) and/or economically disadvantaged (ED) student samples—students most at risk academically. This study quantitatively determined if there exists a relationship, and if so, how strong of a relationship, between ELL and ED students’ academic language and conceptual understanding based on science notebook scores used in a larger science and literacy-infused intervention with a sample of culturally diverse students. The study also considered strengths of relationships between language and concept science notebook scores within student language status groups (ELL, former ELL, and English speaking). Correlational analyses noted positive, large, and significant correlations between students’ language and concept scores overall, with the largest correlations for science notebook entries using more academic language. Large correlations also existed for ELL student entries at the end of the school year. Implications of the findings for future research and practice in science classrooms including literacy interventions, such as science notebooks, with populations of culturally diverse students are discussed
An in silico MS/MS library for automatic annotation of novel FAHFA lipids
BACKGROUND: A new lipid class named ‘fatty acid esters of hydroxyl fatty acids’ (FAHFA) was recently discovered in mammalian adipose tissue and in blood plasma and some FAHFAs were found to be associated with type 2 diabetes. To facilitate the automatic annotation of FAHFAs in biological specimens, a tandem mass spectra (MS/MS) library is needed. Due to the limitation of the commercial available standard compounds, we proposed building an in silico MS/MS library to extend the coverage of molecules. RESULTS: We developed a computer-generated library with 3267 tandem mass spectra (MS/MS) for 1089 FAHFA species. FAHFA spectra were generated based on authentic standards with negative mode electrospray ionization and 10, 20, and 40 V collision induced dissociation at 4 spectra/s as used in in ultra-high performance liquid chromatography-QTOF mass spectrometry studies. However, positional information of the hydroxyl group is only obtained either at lower QTOF spectra acquisition rates of 1 spectrum/s or at the MS(3) level in ion trap instruments. Therefore, an additional set of 4290 fragment-rich MS/MS spectra was created to enable distinguishing positional FAHFA isomers. The library was generated based on ion fragmentations and ion intensities of FAHFA external reference standards, developing a heuristic model for fragmentation rules and extending these rules to large swaths of computer-generated structures of FAHFAs with varying chain lengths, degrees of unsaturation and hydroxyl group positions. Subsequently, we validated the new in silico library by discovering several new FAHFA species in egg yolk, showing that this library enables high-throughput screening of FAHFA lipids in various biological matrices. CONCLUSIONS: The developed library and templates are freely available for commercial or noncommercial use at http://fiehnlab.ucdavis.edu/staff/yanma/fahfa-lipid-library. This in silico MS/MS library allows users to annotate FAHFAs from accurate mass tandem mass spectra in an easy and fast manner with NIST MS Search or PepSearch software. The developing template is provided for advanced users to modify the parameters and export customized libraries according to their instrument features. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13321-015-0104-4) contains supplementary material, which is available to authorized users
- …