737 research outputs found

    Connecting Dark Energy to Neutrinos with an Observable Higgs Triplet

    Get PDF
    To connect the scalar field (acceleron) responsible for dark energy to neutrinos, the usual strategy is to add unnaturally light neutral singlet fermions (right-handed neutrinos) to the Standard Model. A better choice is actually a Higgs triplet, through the coupling of the acceleron to the trilinear Higgs triplet-double-doublet interaction. This hypothesis predicts an easily observable doubly-charged Higgs boson at the forthcoming Large Hadron Collider (LHC).Comment: 9 page

    A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state

    Full text link
    It is extraordinary that a number of observations indicate that we live in a spatially flat, low matter density Universe, which is currently undergoing a period of accelerating expansion. The effort to explain this current state has focused attention on cosmological models in which the dominant component of the cosmic energy density has negative pressure, with an equation of state w1w \ge -1. Remarking that most observations are consistent with models right up to the w=1w=-1 or cosmological constant (Λ\Lambda) limit, it is natural to ask what lies on the other side, at w<1w<-1. In this regard, we construct a toy model of a ``phantom'' energy component which possesses an equation of state w<1w<-1. Such a component is found to be compatible with most classical tests of cosmology based on current data, including the recent type 1a SNe data as well as the cosmic microwave background anisotropy and mass power spectrum. If the future observations continue to allow w<1w<-1, then barring unanticipated systematic effects, the dominant component of the cosmic energy density may be stranger than anything expected.Comment: update of original version, includes new material, matches version appearing in Phys. Lett. B, (17 pages, 7 eps figures

    What's Behind Acoustic Peaks in the Cosmic Microwave Background Anisotropies

    Get PDF
    We give a brief review of the physics of acoustic oscillations in Cosmic Microwave Background (CMB) anisotropies. As an example of the impact of their detection in cosmology, we show how the present data on CMB angular power spectrum on sub-degree scales can be used to constrain dark energy cosmological models.Comment: 6 pages, proceedings to the TAUP2001 conference, LNGS, Italy, Sept. 200

    Constraining Perturbative Early Dark Energy with Current Observations

    Full text link
    In this work, we study a class of early dark energy (EDE) models, in which, unlike in standard DE models, a substantial amount of DE exists in the matter-dominated era, self-consistently including DE perturbations. Our analysis shows that, marginalizing over the non DE parameters such as Omegam,H0,nsOmega_m, H_0, n_s, current CMB observations alone can constrain the scale factor of transition from early DE to late time DE to at0.44a_t \geq 0.44 and width of transition to Deltat0.37Delta_t \leq 0.37. The equation of state at present is somewhat weakly constrained to w00.6w_0 \leq -0.6, if we allow H0<60H_0 < 60 km/s/Mpc. Taken together with other observations, such as supernovae, HST, and SDSS LRGs, the constraints are tighter-- w00.9,at0.19,Δt0.21w_0 \leq -0.9, a_t \leq 0.19, \Delta_t \leq 0.21. The evolution of the equation of state for EDE models is thus close to Λ\LambdaCDM at low redshifts. Incorrectly assuming DE perturbations to be negligible leads to different constraints on the equation of state parameters, thus highlighting the necessity of self-consistently including DE perturbations in the analysis. If we allow the spatial curvature to be a free parameter, then the constraints are relaxed to w00.77,at0.35,Δt0.35w_0 \leq -0.77, a_t \leq 0.35, \Delta_t \leq 0.35 with 0.014<Ωκ<0.031-0.014 < \Omega_{\kappa} < 0.031 for CMB+other observations. For perturbed EDE models, the 2σ2\sigma lower limit on σ8\sigma_8 (σ80.59\sigma_8 \geq 0.59) is much lower than that in Λ\LambdaCDM (σ80.72\sigma_8 \geq 0.72), thus raising the interesting possibility of discriminating EDE from Λ\LambdaCDM using future observations such as halo mass functions or the Sunyaev-Zeldovich power spectrum.Comment: 12 pages, 5 figures, references updated, accepted for publication in Ap

    Constraints on Lema\^{\i}tre-Tolman-Bondi models from Observational Hubble Parameter data

    Full text link
    We use the observational Hubble parameter data (OHD), both the latest observational dataset (Stern et al. 2010, referred to as SJVKS) and the simulated datasets, to constrain Lema\^{\i}tre-Tolman-Bondi (LTB) void models. The necessity of the consistency check on OHD itself in the LTB cosmology is stressed. Three voids are chosen as test models and are constrained using the Union2 dataset of SN Ia as well as OHD. Despite their different parametrization, the results from our test models show some indicating similarities, e.g., the best-fit voids obtained from OHD are all considerably broader than those from SN Ia. Due to the small size of the SJVKS dataset, the constraints are not conclusive. The constraining power of the future OHD observations are therefore investigated, through a Figure of Merit (FoM) analysis based on the Monte Carlo simulated data. We found that, in the case that the future OHD become more consistent with SN Ia, the results from the test models are almost unanimous: 1) as many as 32 OHD data points at the SJVKS-like uncertainty level are needed to give a higher FoM than the Union2 dataset of SN Ia; 2) precise observation helps reduce this required number; 3) increasing the survey depth does not always increase the FoM. On the other hand, if the future OHD and the Union2 dataset keep favor different voids, in a similar manner as they do at present, the 1{\sigma} confidence regions obtained from the two probes should finally separate. We test this conjecture and found that, the minimum observational requirement (the size of the dataset, the uncertainty level and the survey depth) for this inconsistency to emerge depends strongly on the void model.Comment: 14 pages, 14 figures, 5 tables, accepted for publication in Ap

    Perturbation evolution with a non-minimally coupled scalar field

    Get PDF
    We recently proposed a simple dilaton-derived quintessence model in which the scalar field was non-minimally coupled to cold dark matter, but not to `visible' matter. Such couplings can be attributed to the dilaton in the low energy limit of string theory, beyond tree level. In this paper we discuss the implications of such a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find that the model only deviates from Λ\LambdaCDM and minimally coupled theories at late times, and is well fitted to current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents a valuable opportunity to constrain non-minimal couplings given the wealth of new observational data promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison with SN1a and projected MAP results, and appendix adde

    Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    Full text link
    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well determined distance eigenmodes that are not very sensitive to the dark energy equation of state parameters w_0 and w_a, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1+z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Omega_k of the universe simultaneously with the constraints on the comoving distances.Comment: 15 pages, 9 figures, details and references added, ApJ accepte

    Characterizing and Propagating Modeling Uncertainties in Photometrically-Derived Redshift Distributions

    Full text link
    The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photometric redshifts measured in these surveys depends not only on the quality of the flux data, but also on a number of modeling assumptions that enter into both the training set and SED fitting methods of photometric redshift estimation. In this work we focus on the latter, considering two types of modeling uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type priors used in a Bayesian photometric redshift estimation method. We find that SED template selection effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in cosmological parameters.Comment: 13 pages, 12 figures, version published in Ap

    Infrared cut-off proposal for the Holographic density

    Get PDF
    We propose an infrared cut-off for the holographic the dark-energy, which besides the square of the Hubble scale also contains the time derivative of the Hubble scale. This avoids the problem of causality which appears using the event horizon area as the cut-off, and solves the coincidence problem.Comment: 9 pages, 2 figures, to appear in Phys. Lett.

    Number counts in homogeneous and inhomogeneous dark energy models

    Full text link
    In the simple case of a constant equation of state, redshift distribution of collapsed structures may constrain dark energy models. Different dark energy models having the same energy density today but different equations of state give quite different number counts. Moreover, we show that introducing the possibility that dark energy collapses with dark matter (``inhomogeneous'' dark energy) significantly complicates the picture. We illustrate our results by comparing four dark energy models to the standard Λ\Lambda-model. We investigate a model with a constant equation of state equal to -0.8, a phantom energy model and two scalar potentials (built out of a combination of two exponential terms). Although their equations of state at present are almost indistinguishable from a Λ\Lambda-model, both scalar potentials undergo quite different evolutions at higher redshifts and give different number counts. We show that phantom dark energy induces opposite departures from the Λ\Lambda-model as compared with the other models considered here. Finally, we find that inhomogeneous dark energy enhances departures from the Λ\Lambda-model with maximum deviations of about 15% for both number counts and integrated number counts. Larger departures from the Λ\Lambda-model are obtained for massive structures which are rare objects making it difficult to statistically distinguish between models.Comment: 10 pages, 11 figures. Version accepted for publication in A&
    corecore