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We propose an infrared cut-off for the holographic dark energy, which besides the square of the Hubble
scale also contains the time derivative of the Hubble scale. This avoids the problem of causality which
appears using the event horizon area as the cut-off, and solves the coincidence problem.
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1. Introduction

Recent astrophysical data from distant Ia supernovae observa-
tions [1,2] show that the current Universe is not only expanding,
but also it is accelerating due to some kind of negative-pressure
form of matter known as dark energy [3,4]. The simplest candidate
for dark energy is the cosmological constant [5], conventionally as-
sociated with the energy of the vacuum with constant energy den-
sity and pressure, and an equation of state w = −1. The present
observational data favor an equation of state for the dark energy
with parameter very close to that of the cosmological constant. The
next simple model proposed for dark energy is the quintessence
(see [6–8]), a dynamical scalar field which slowly rolls down in a
flat enough potential. The equation of state for a spatially homo-
geneous quintessence scalar field satisfies w > −1 and therefore
can produce accelerated expansion. This field is taken to be ex-
tremely light which is compatible with its homogeneity and avoids
the problem with the initial conditions.

More exotic models proposed to explain the nature of the dark
energy, are related with K-essence models based on scalar field
with non-standard kinetic term [9,10]; string theory fundamental
scalars known as tachyon [11] and dilaton [12]; scalar field with
negative kinetic energy, which provides a solution known as phan-
tom dark energy [13], and Chaplygin gas [14] among others (for
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a review on above mentioned and other approaches, see [3]). An
alternative approach to dark energy is related to modified the-
ory of gravity f (R) [15–18], in which dark energy emerges from
the modification of geometry. Of course this modifications should
pass precise solar system tests, which leads to the necessity of fine
tunning in the additional terms, and this significantly restricts the
possible form of the f (R) gravity.

Recent studies of black holes and string theories may provide a
new alternative to the solution of the dark energy problem, known
as the holographic principle [19–22]. This principle emerges as a
new paradigm in quantum gravity and was first put forward by
t’ Hooft [20] in the context of black hole physics and later ex-
tended by Susskind [23] to string theory. According to the holo-
graphic principle, the entropy of a system scales not with it’s vol-
ume, but with it’s surface area [21,23]. In other words, the degrees
of freedom of a spatial region reside not in the bulk but only at
the boundary of the region and the number of degrees of freedom
per Planck area is no greater than unity. Applied to cosmology, Fis-
chler and Susskind [24] have proposed a version of the holographic
principle: at any time during cosmological evolution, the gravita-
tional entropy within a closed surface should be always larger than
the particle entropy that passes through the past light-cone of that
surface. In the case of the standard big-bang cosmology, they have
found that only open or flat universe but not closed one is com-
patible with the cosmological holographic principle, provided one
makes certain assumptions on the initial big-bang singularity.

In the work [22], it was suggested that in quantum field theory
a short distance cut-off is related to a long distance cut-off due to
the limit set by formation of a black hole, namely, if is the quan-
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tum zero-point energy density caused by a short distance cut-off,
the total energy in a region of size L should not exceed the mass
of a black hole of the same size, thus L3ρΛ � LM2

p . The largest L
allowed is the one saturating this inequality, thus

ρΛ = 3c2M2
p L−2. (1.1)

In the context of the dark energy problem, initially the holo-
graphic principle proposes that essentially the unknown vacuum
energy density ρΛ is proportional to the square of the Hubble scale
ρΛ ∝ H2. This in principle solves the fine tunning problem, but the
equation of state is zero and does not contribute to the present ac-
celerated expansion. As was shown in work [25], using the particle
horizon as the length scale gives an equation of state parameter
higher than −1/3, which neither explain the present acceleration,
but the future event horizon gives the desired acceleration regime,
although this model faces the causality problem.

For purely dimensional reasons we propose a new infrared cut-
off for the holographic density which includes time derivative of
the Hubble parameter, and in this Letter we study the fitting of
this model with the current observational data. In favor of this new
term we can say that the underlying origin of the holographic dark
energy is still unknown and that the new term is contained in the
expression for the Ricci scalar which scales as L−2 (a model with
holographic dark energy proportional to the Ricci scalar was pro-
posed in [26]). So, we propose a holographic density of the form
ρ ≈ αH2 + β Ḣ .

2. The model

Let us start with the following holographic dark energy density:

ρΛ = 3
(
αH2 + β Ḣ

)
, (2.1)

where α and β are constants to be determined and H = ȧ/a is the
Hubble parameter. The usual Friedmann equation is

H2 = 1

3

(
ρm + ρr + ρΛ

)
, (2.2)

where we have taken 8πG = 1 and ρm , ρr terms are the contribu-
tions of non-relativistic matter and radiation, respectively. Setting
x = ln a, we can rewrite the Friedmann equation as follows:

H2 = 1

3

(
ρm0e−3x + ρr0e−4x) + αH2 + β

2

dH2

dx
. (2.3)

Introducing the scaled Hubble expansion rate H̃ = H/H0, where
H0 is the present value of the Hubble constant (for x = 0), the
above Friedman equation becomes

H̃2 = Ωm0e−3x + Ωr0e−4x + α H̃2 + β

2

dH̃2

dx
, (2.4)

where Ωm0 = ρm0/3H2
0 and Ωr0 = ρr0/3H2

0 are the current density
parameters of non-relativistic matter and radiation. The last two
terms in the above equation, valuated at x = 0, represent the cur-
rent holographic dark energy density parameter ΩΛ0. These densi-
ties satisfy the constraint from Eqs. 2.2, 2.4 Ωm0 + Ωr0 + ΩΛ0 = 1.
Solving Eq. (2.4), we obtain

H̃2 = Ωm0e−3x + Ωr0e−4x + 3β − 2α

2α − 3β − 2
Ωm0e−3x

+ 2β − α

α − 2β − 1
Ωr0e−4x + Ce−2x(α−1)/β , (2.5)

where C is an integration constant and the last three terms give
the scaled dark energy density, which we will represent as ρ̃Λ =
ρΛ

3H2 :

0

Fig. 1. Deceleration parameter versus redshift, considering ω0 = −1, Ωm0 = 0.27,
Ωr0 = 0, ΩΛ0 = 0.73 and β = 0.3, 0.5, 0.7.

ρ̃Λ = 3β − 2α

2α − 3β − 2
Ωm0e−3x

+ 2β − α

α − 2β − 1
Ωr0e−4x + Ce−2x(α−1)/β . (2.6)

Substituting the expression for ρ̃Λ into the energy conservation
equation

p̃Λ = −ρ̃Λ − 1

3

dρ̃Λ

dx
, (2.7)

we obtain the dark energy pressure

p̃Λ = 2α − 3β − 2

3β
Ce−2x(α−1)/β + 2β − α

3(α − 2β − 1)
Ωr0e−4x. (2.8)

There are three constants α, β and C to be determined in the ex-
pressions (2.6) and (2.8). Considering the equation of state for the
present epoch values of the density and pressure (i.e. at x = 0) of
the dark energy, p̃Λ0 = ω0ΩΛ0, we obtain (note that ρ̃Λ0 = ΩΛ0)

C = 1 + 2Ωm0

2(ΩΛ0 − 1) + β(3Ωm0 + 4Ωr0 + 3(1 + ω0)ΩΛ0 − 3)

+ 2Ωr0

2(ΩΛ0 − 1) + β(3Ωm0 + 4Ωr0 + 3(1 + ω0)ΩΛ0 − 4)
, (2.9)

and

α = 1

2

(
2ΩΛ0 + β

(
3Ωm0 + 4Ωr0 + 3(1 + ω0)ΩΛ0

))
, (2.10)

where the constants C and α are given in terms of the constant β ,
which will be fixed by the behavior of the deceleration parameter
versus the redshift z, adjusting the value of β in order to obtain zT

at which the deceleration parameter pases from the deceleration to
acceleration regime [3]. The deceleration parameter is given by

q = 1

2
+ 3p̃Λ

2(ρ̃Λ + ρ̃m)
, (2.11)

where in what follows we despise the contribution from radiation,
pm = 0 for dust matter, ρ̃m = ρm/3H2

0, and ρ̃Λ , p̃Λ are given by
Eqs. (2.6, 2.8), respectively.

The evolution of the deceleration parameter is shown in Fig. 1
for the parameter values: Ωm0 = 0.27, Ωr0 = 0, ΩΛ0 = 0.73,
ω0 = −1 (which are consistent with current observations) and
some values of β . Note that for β = 0.5,0.7, the values of the
transition redshift zT are consistent with the current observational
data [27,28].

The evolution of the equation of state parameter ω = pΛ/ρΛ is
shown in Fig. 2 for β = 0.5. It runs from nearly 0 at high redshifts
to −1 at z− > 0, behaving like some scalar-field models of dark
energy [3].
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Fig. 2. Equation of state parameter versus redshift, considering ω0 = −1, Ωm0 =
0.27, Ωr0 = 0, ΩΛ0 = 0.73 and β = 0.5.

3. Discussion

We propose a new infrared cut-off for the holographic dark en-
ergy model, which includes a term proportional to Ḣ . Contrary
to the holographic dark energy based on the event horizon, this
model depends on local quantities, avoiding in this way the causal-
ity problem. Calculating the contribution at radiation epoch to
radiation by dark energy from Eq. (2.5), it follows that in order
to be consistent with the Big-Bang nucleosynthesis theory con-
straints, the constant β should be very close to 0.5. At small red-
shift (z < 1), note that in the expression of density for dark energy
Eq. (2.6), there are two terms which track dark matter and radi-
ation, respectively. So this model avoids the coincidence problem.
The only parameter in this model which needs to be fitted by ob-
servational data is the new parameter β . Once β is fixed by the
appropriate value of the transition redshift zT (see Fig. 1), the pa-
rameter α becomes fixed by Eq. (2.10) (if we take β ≈ 0.5, then
α ≈ 0.93 and zT ≈ 0.67). From Fig. 1 we see that the change from
deceleration to acceleration takes place for data-consistent values
of the model parameters, showing that this model is viable phe-
nomenologically, although still to be studied the field model that
justify the presence of Ḣ term in this kind of dark energy den-
sity.
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