1,409 research outputs found

    ‘I’m my own boss…’: Active intermediation and ‘entrepreneurial’ worker agency in the Australian gig-economy

    Get PDF
    Platform firm in the gig-economy are disrupting work as a social practice, production systems and recasting capital-labour relations. This qualitative study examines worker agency in the Australian food-delivery sector; a segment where platforms actively intermediate both product and labour markets. Within this sector, worker agency poses a potential challenge to platform-organisations; however this study reveals how these platforms’ work organisation and market regulation constrain agency potential. Shaped by the work’s spatio-temporal features, organisational fixes and institutional context, it is shown how food-delivery workers, transiently attached to the labour market, predominantly engage in ‘entrepreneurial agency’ – a low-level agency expression aimed at materially improving individual conditions and aligning with, rather than challenging, platforms’ business models

    Water vapor in the starburst galaxy NGC 253: A new nuclear maser?

    Full text link
    22 GHz water vapor emission was observed toward the central region of the spiral starburst galaxy NGC 253. Monitoring observations with the 100-m telescope at Effelsberg and measurements with the BnC array of the VLA reveal three distinct velocity components, all of them blueshifted with respect to the systemic velocity. The main component arises from a region close to the dynamical center and is displaced by <1 arcsec from the putative nuclear continuum source. The bulk of this maser component is spread over an area not larger than 70 x 50 mas. Its radial velocity may be explained by masing gas that is part of a nuclear accretion disk or of a counterrotating kinematical subsystem or by gas that is entrained by the nuclear superwind or by an expanding supernova shell. A weaker feature, located 5 arcsec to the northeast, is likely related to an optically obscured site of massive star formation.Comment: 6 pages, 4 Postscript figures, A&A Main Journa

    Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change

    Get PDF
    Climate change often leads to shifts in the distribution of small pelagic fish, likely by changing the match-mismatch dynamics between these sensitive species within their environmental optima. Using present-day habitat suitability, we projected how different scenarios of climate change (IPCC Representative Concentration Pathways 2.6, 4.5 and 8.5) may alter the large scale distribution of European sardine Sardina pilchardus (a model species) by 2050 and 2100. We evaluated the variability of species-specific environmental optima allowing a comparison between present-day and future scenarios. Regardless of the scenario, sea surface temperature and salinity and the interaction between current velocity and distance to the nearest coast were the main descriptors responsible for the main effects on sardine's distribution. Present-day and future potential “hotspots” for sardine were neritic zones ( 20 (PSU), on average. Most variability in projected shifts among climatic scenarios was in habitats with moderate to low suitability. By the end of this century, habitat suitability was projected to increase in the Canary Islands, Iberian Peninsula, central North Sea, northern Mediterranean, and eastern Black Sea and to decrease in the Atlantic African coast, southwest Mediterranean, English Channel, northern North Sea and Western U.K. A gradual poleward-eastward shift in sardine distribution was also projected among scenarios. This shift was most pronounced in 2100 under RCP 8.5. In that scenario, sardines had a 9.6% range expansion which included waters along the entire coast of Norway up and into the White Sea. As habitat suitability is mediated by the synergic effects of climate variability and change on species fitness, it is critical to apply models with robust underlying species-habitat data that integrate knowledge on the full range of processes shaping species productivity and distribution.Preprin

    Density Functional Theory Study of the Adsorption of Oxygen and Hydrogen on 3d Transition Metal Surfaces with Varying Magnetic Ordering

    Get PDF
    We have employed density functional theory (DFT) calculations to investigate the adsorption of molecular oxygen and hydrogen on 3d transition metal (TM) surfaces with varying ordered magnetic structures in the bulk, namely ferromagnetic Fe(110), Co(0001), Ni(111) and diamagnetic Cu(111). The trend observed in the energies of adsorption was compared with the magnetic moment of the cell using the d-band centre model of chemisorption and the Stoner model of magnetic energy. As the gap between the d-band centre and the Fermi level of the TM decreases, more antibonding orbitals are present above the Fermi level and thus unoccupied, leading to stronger binding. Correspondingly, the shift in the d-band centre decreases the density of states (DOS) at the Fermi level giving rise to the ordered magnetic structure

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    VECTORS of change in the marine environment: Ecosystem and economic impacts and management implications

    Get PDF
    Human use of the European marine environment is increasing and diversifying. This is creating new mechanisms for human induced-changes in marine life which need to be understood and quantified as well as the impact of these changes on ecosystems, their structures (e.g. biodiversity) and functioning (e.g. productivity), and the social and economic consequences that arise. The current and emerging pressures are multiple and interacting, arising, for example, from transport, platforms for renewable and nonrenewable energy, exploitation of living and non-living resources, agricultural and industrial discharges, together with wider environmental changes (including climate change). Anticipating the future consequences of these pressures and vectors of change for marine life and of adaptation and mitigation measures (such as the introduction of new technologies and structures, new ballast water practices, ocean and offshore wind energy devices and new fishing strategies) is a prerequisite to the development and implementation of strategies, policies and regulations to manage the marine environment, such as the IMO Convention on ballast water management and the EU Maritime Policy and Marine Strategy Framework Directive

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (&lt;100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
    corecore