51 research outputs found

    Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients With Cirrhosis: A Randomized Trial.

    Get PDF
    Cirrhosis; Probiotic; Cognitive functionCirrosis; Probiòtic; Funció cognitivaCirrosis; Probiótico; Función cognitivaProbiotics can modulate gut microbiota, intestinal permeability, and immune response and could therefore improve cognitive dysfunction and help avoid potential consequences, such as falls, in patients with cirrhosis. The aim of this study was to evaluate the effect of a multistrain probiotic on cognitive function, risk of falls, and inflammatory response in patients with cirrhosis. Consecutive outpatients with cirrhosis and cognitive dysfunction (defined by a Psychometric Hepatic Encephalopathy Score [PHES] < -4) and/or falls in the previous year were randomized to receive either a sachet of a high-concentration multistrain probiotic containing 450 billion bacteria twice daily for 12 weeks or placebo. We evaluated the changes in cognitive function (PHES); risk of falls (Timed Up and Go [TUG] test, gait speed, and incidence of falls); systemic inflammatory response; neutrophil oxidative burst; intestinal barrier integrity (serum fatty acid-binding protein 6 [FABP-6] and 2 [FABP-2] and zonulin and urinary claudin-3); bacterial translocation (lipopolysaccharide-binding protein [LBP]); and fecal microbiota. Thirty-six patients were included. Patients treated with the probiotic (n = 18) showed an improvement in the PHES (P = 0.006), TUG time (P = 0.015) and gait speed (P = 0.02), and a trend toward a lower incidence of falls during follow-up (0% compared with 22.2% in the placebo group [n = 18]; P = 0.10). In the probiotic group, we observed a decrease in C-reactive protein (P = 0.01), tumor necrosis factor alpha (P = 0.01), FABP-6 (P = 0.009), and claudin-3 (P = 0.002), and an increase in poststimulation neutrophil oxidative burst (P = 0.002). Conclusion: The multistrain probiotic improved cognitive function, risk of falls, and inflammatory response in patients with cirrhosis and cognitive dysfunction and/or previous falls

    c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression

    Get PDF
    Treatment of muscle-invasive bladder cancer remains a major clinical challenge. Aberrant HGF/c-MET upregulation and activation is frequently observed in bladder cancer correlating with cancer progression and invasion. However, the mechanisms underlying HGF/c-MET-mediated invasion in bladder cancer remains unknown. As part of a negative feedback loop SMAD7 binds to SMURF2 targeting the TGFβ receptor for degradation. Under these conditions, SMAD7 acts as a SMURF2 agonist by disrupting the intramolecular interactions within SMURF2. We demonstrate that HGF stimulates TGFβ signalling through c-SRC-mediated phosphorylation of SMURF2 resulting in loss of SMAD7 binding and enhanced SMURF2 C2-HECT interaction, inhibiting SMURF2 and enhancing TGFβ receptor stabilisation. This upregulation of the TGFβ pathway by HGF leads to TGFβ-mediated EMT and invasion. In vivo we show that TGFβ receptor inhibition prevents bladder cancer invasion. Furthermore, we make a rationale for the use of combinatorial TGFβ and MEK inhibitors for treatment of high-grade non-muscle-invasive bladder cancers

    The ζ Toxin Induces a Set of Protective Responses and Dormancy

    Get PDF
    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε2) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5×10−5). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K+. We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε2 antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity

    Strength of Social Tie Predicts Cooperative Investment in a Human Social Network

    Get PDF
    Social networks – diagrams which reflect the social structure of animal groups – are increasingly viewed as useful tools in behavioural ecology and evolutionary biology. Network structure may be especially relevant to the study of cooperation, because the action of mechanisms which affect the cost:benefit ratio of cooperating (e.g. reciprocity, punishment, image scoring) is likely to be mediated by the relative position of actor and recipient in the network. Social proximity could thus affect cooperation in a similar manner to biological relatedness. To test this hypothesis, we recruited members of a real-world social group and used a questionnaire to reveal their network. Participants were asked to endure physical discomfort in order to earn money for themselves and other group members, allowing us to explore relationships between willingness to suffer a cost on another's behalf and the relative social position of donor and recipient. Cost endured was positively correlated with the strength of the social tie between donor and recipient. Further, donors suffered greater costs when a relationship was reciprocated. Interestingly, participants regularly suffered greater discomfort for very close peers than for themselves. Our results provide new insight into the effect of social structure on the direct benefits of cooperation

    Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates

    Get PDF
    Oat (Avena sativa) is one of the most cultivated and consumed cereals worldwide. Recognized among cereals for its high protein content (12% to 24%), it makes it an excellent source of bioactive peptides, which could be modified during processes such as heating and gastrointestinal digestion (GID). This work aims to evaluate the impact of heat treatment on the proteolysis of oat proteins and on the evolution of antioxidant peptide release during in vitro static GID, in terms of comparative analysis between cooked oat protein concentrate (COPC) and non-heated oat protein concentrate (OPC) samples. The protein extraction method and cooking procedure used showed no detrimental effects on protein quality. After GID, the proportion of free amino acids/dipeptides (40% for both samples (OPC and COPC), thus producing peptides with low molecular weight and enhanced bioactivity. Furthermore, during GID, the amino acid profile showed an increase in essential, positively-charged, hydrophobic and aromatic amino acids. At the end of GID, the reducing power of OPC and COPC increased >0.3 and 8-fold, respectively, in comparison to the non-digested samples; while ABTS•+ and DPPH• showed a >20-fold increase. Fe2+ chelating capacity of OPC and COPC was enhanced >4 times; similarly, Cu2+ chelation showed a >19-fold enhancement for OPC and >10 for COPC. β-carotene bleaching activity was improved 0.8 times in OPC and >9 times in COPC; the oxygen radical antioxidant capacity assay increased 2 times in OPC and >4.7 times in COPC, respectively. This study suggests that OPC after cooking and GID positively influenced the nutritional and bioactive properties of oat peptides. Thus, COPC could be used as a functional food ingredient with health-promoting effects, as hydrothermal treatment is frequently used for this type of cereals

    Community-level characteristics and environmental factors of child respiratory illnesses in Southern Arizona

    Get PDF
    Abstract Background Lower respiratory illnesses (LRIs) and asthma are common diseases in children 0.05). Conclusions Our study revealed complex, multi-factorial associations between predictors and outcomes. Findings indicate that many rural areas with lower SES have distinct factors for childhood respiratory diseases that require further investigation. County-wide differences in maternal characteristics or agricultural land uses (not tested here) may also play a role in Pima County residence protecting against hospitalizations, when compared to Maricopa County. By better understanding this and other relationships, more focused public health interventions at the community level could be developed to reduce and better control these diseases in children <5 years, who are more physiologically vulnerable

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore