174 research outputs found

    A multistate single-connection calibration for microwave microfluidics

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With emerging medical, chemical, and biological applications of microwave-microfluidic devices, many researchers desire a fast and accurate calibration that can be achieved in a single connection. However, traditional on-wafer or coaxial calibrations require measurements of several different artifacts to the data prior to measuring the microwave-microfluidic device. Ideally, a single artifact would be able to present different impedance states to correct the vector network analyzer data, minimizing drift and eliminating artifact-to-artifact connection errors. Here, we developed a multistate single-connection calibration that used a coplanar waveguide loaded with a microfluidic channel. We then used measurements of the uncorrected scattering parameters of the coplanar waveguide with the channel empty, filled with deionized water, and filled with 30 w% (30 grams per liter) of saline to construct an eight-term error model and switch-term correction. After correction, the residuals between measured scattering parameters and with the literaturebased finite-element simulations were below -40 dB from 100 MHz to 110 GHz. This multistate single-connection calibration is compatible with both wafer-probed and connectorized microwave-microfluidic devices for accurate impedance spectroscopy and materials characterization without the need for multiple device measurements.Peer ReviewedPostprint (author's final draft

    Porto-systemic shunt using adrenal vein as a conduit; an alternative procedure for spleno – renal shunt

    Get PDF
    PubMed ID: 17555599Background. Currently, portal hypertension is still big problem for the patients with serious liver diseases. Variceal bleeding is one of the most important complications of portal hypertension. In case of failure of endoscopic and combined medical treatments, surgical decompressive shunts are required. We emphasized an alternative splenorenal shunt procedure using adrenal vein as a conduit. Case presentation. A 26-year-old male suffered from recurrent variceal bleeding was considered for surgical therapy. Although we planned to perform a distal splenorenal shunt procedure, it was observed to be difficult. Therefore left adrenal vein was used as a conduit between left renal vein and splenic vein after splenic artery was ligated. He did well and was discharged from the hospital on the postoperative day 6. In the follow up period for nine months, endoscopic and ultrasonographic examinations were normal. Conclusion. We concluded that, in case of failure to perform distal splenorenal shunt due to technical problems, alternative porto-systemic shunt procedure using the adrenal vein as a vascular conduit can be safely employed. © 2007 Aydin et al; licensee BioMed Central Ltd

    Prevalence of vancomycin-resistant Enterococcus fecal colonization among kidney transplant patients

    Get PDF
    BACKGROUND: End stage renal disease patients are at risk of Vancomycin-Resistant Enterococcus (VRE) infections. The first reports of VRE isolation were from hemodialysis patients. However, to date, VRE fecal colonization rates as well as associated risk factors in kidney transplant patients have not yet been established in prospective studies. METHODS: We collected one or two stool samples from 280 kidney transplant patients and analysed the prevalence of VRE and its associated risk factors. Patients were evaluated according to the post-transplant period: group 1, less than 30 days after transplantation (102 patients), group 2, one to 6 months after transplantation (73 patients) and group 3, more than 6 months after transplantation (105 patients). RESULTS: The overall prevalence rate of fecal VRE colonization was 13.6% (38/280), respectively 13.7% for Group 1, 15.1% for group 2 and 12.4% for group 3. E. faecium and E. faecalis comprised 50% of all VRE isolates. No immunologic variables were clearly correlated with VRE colonization and no infections related to VRE colonization were reported. CONCLUSION: Fecal VRE colonization rates in kidney transplant patients were as high as those reported for other high-risk groups, such as critical care and hemodialysis patients. This high rate of VRE colonization observed in kidney transplant recipients may have clinical relevance in infectious complications

    Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities

    Get PDF
    PTEN-controlled PI3K-AKT-mTOR pathway represents one of the most deregulated signaling pathways in human cancers. With many small molecule inhibitors that target PI3K-AKT-mTOR pathway being exploited clinically, sensitive and reliable ways of stratifying patients according to their PTEN functional status and determining treatment outcomes are urgently needed. Heterogeneous loss of PTEN is commonly associated with human cancers and yet PTEN can also be regulated on epigenetic, transcriptional or post-translational levels, which makes the use of simple protein or gene expression-based analyses in determining PTEN status less accurate. In this study, we used network component analysis to identify 20 transcription factors (TFs) whose activities deduced from their target gene expressions were immediately altered upon the re-expression of PTEN in a PTEN-inducible system. Interestingly, PTEN controls the activities (TFA) rather than the expression levels of majority of these TFs and these PTEN-controlled TFAs are substantially altered in prostate cancer mouse models. Importantly, the activities of these TFs can be used to predict PTEN status in human prostate, breast and brain tumor samples with enhanced reliability when compared to straightforward IHC-based or expression-based analysis. Furthermore, our analysis indicates that unique sets of PTEN-controlled TFAs significantly contribute to specific tumor types. Together, our findings reveal that TFAs may be used as “signatures” for predicting PTEN functional status and elucidate the transcriptional architectures underlying human cancers caused by PTEN loss

    Cyberinfrastructure for the digital brain:spatial standards for integrating rodent brain atlases

    Get PDF
    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today’s data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project

    Adoption of an “Open” Envelope Conformation Facilitating CD4 Binding and Structural Remodeling Precedes Coreceptor Switch in R5 SHIV-Infected Macaques

    Get PDF
    A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more “open” envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an “open” envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch

    Mechanism of cellular rejection in transplantation

    Get PDF
    The explosion of new discoveries in the field of immunology has provided new insights into mechanisms that promote an immune response directed against a transplanted organ. Central to the allograft response are T lymphocytes. This review summarizes the current literature on allorecognition, costimulation, memory T cells, T cell migration, and their role in both acute and chronic graft destruction. An in depth understanding of the cellular mechanisms that result in both acute and chronic allograft rejection will provide new strategies and targeted therapeutics capable of inducing long-lasting, allograft-specific tolerance

    The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability

    Get PDF
    BACKGROUND: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. CONSTRUCTION AND CONTENT: Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class ‘cell in vitro’ have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. UTILITY AND DISCUSSION: The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies—for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. CONCLUSIONS: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the CL both among developers and within the user community
    corecore