290 research outputs found

    Water on hexagonal boron nitride from diffusion Monte Carlo

    Get PDF
    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 +/- 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals, and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT

    Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces

    Get PDF
    Non-bonded potentials are included in most force fields and therefore widely used in classical molecular dynamics simulations of materials and interfacial phenomena. It is commonplace to truncate these potentials for computational efficiency based on the assumption that errors are negligible for reasonable cutoffs or compensated for by adjusting other interaction parameters. Arising from a metadynamics study of the wetting transition of water on a solid substrate, we find that the influence of the cutoff is unexpectedly strong and can change the character of the wetting transition from continuous to first order by creating artificial metastable wetting states. Common cutoff corrections such as the use of a force switching function, a shifted potential, or a shifted force do not avoid this. Such a qualitative difference urges caution and suggests that using truncated non-bonded potentials can induce unphysical behavior that cannot be fully accounted for by adjusting other interaction parameters

    Atomic-Scale Picture of the Composition, Decay, and Oxidation of Two-Dimensional Radioactive Films

    Get PDF
    Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications

    Childhood-onset Leber hereditary optic neuropathy

    Get PDF
    BACKGROUND: The onset of Leber hereditary optic neuropathy (LHON) is relatively rare in childhood. This study describes the clinical and molecular genetic features observed in this specific LHON subgroup. METHODS: Our retrospective study consisted of a UK paediatric LHON cohort of 27 patients and 69 additional cases identified from a systematic review of the literature. Patients were included if visual loss occurred at the age of 12 years or younger with a confirmed pathogenic mitochondrial DNA mutation: m.3460G>A, m.11778G>A or m.14484T>C. RESULTS: In the UK paediatric LHON cohort, three patterns of visual loss and progression were observed: (1) classical acute (17/27, 63%); (2) slowly progressive (4/27, 15%); and (3) insidious or subclinical (6/27, 22%). Diagnostic delays of 3-15 years occurred in children with an insidious mode of onset. Spontaneous visual recovery was more common in patients carrying the m.3460G>A and m.14484T>C mutations compared with the m.11778G>A mutation. Based a meta-analysis of 67 patients with available visual acuity data, 26 (39%) patients achieved a final best-corrected visual acuity (BCVA) ≥0.5 Snellen decimal in at least one eye, whereas 13 (19%) patients had a final BCVA <0.05 in their better seeing eye. CONCLUSIONS: Although childhood-onset LHON carries a relatively better visual prognosis, approximately 1 in 5 patients will remain within the visual acuity criteria for legal blindness in the UK. The clinical presentation can be insidious and LHON should be considered in the differential diagnosis when faced with a child with unexplained subnormal vision and optic disc pallor

    In vivo photopharmacology with light-activated opioid drugs

    Full text link
    Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo, we developed photoactivatable oxymorphone (PhOX) and photoactivatable naloxone (PhNX), photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry in response to chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action

    Clinical course of cone dystrophy caused by mutations in the RPGR gene

    Get PDF
    Contains fulltext : 97720.pdf (publisher's version ) (Closed access)BACKGROUND: Mutations in the RPGR gene predominantly cause rod photoreceptor disorders with a large variability in clinical course. In this report, we describe two families with mutations in this gene and cone involvement. METHODS: We investigated an X-linked cone dystrophy family (1) with 25 affected males, 25 female carriers, and 21 non-carriers, as well as a small family (2) with one affected and one unaffected male. The RPGR gene was analyzed by direct sequencing. All medical records were evaluated, and all available data on visual acuity, color vision testing, ophthalmoscopy, fundus photography, fundus autofluorescence, Goldmann perimetry, SD-OCT, dark adaptation, and full-field electroretinography (ERG) were registered. Cumulative risks of visual loss were studied with Kaplan-Meier product-limit survival analysis. RESULTS: Both families had a frameshift mutation in ORF15 of the RPGR gene; family 1 had p.Ser1107ValfsX4, and family 2 had p.His1100GlnfsX10. Mean follow up was 13 years (SD 10). Virtually all affected males showed reduced photopic and normal scotopic responses on ERG. Fifty percent of the patients had a visual acuity of <0.5 at age 35 years (SE 2.2), and 75% of the patients was legally blind at age 60 years (SE 2.3). Female carriers showed no signs of ocular involvement. CONCLUSIONS: This report describes the clinical course and visual prognosis in two families with cone dystrophy due to RPGR mutations in the 3' terminal region of ORF15. Remarkable features were the consistent, late-onset phenotype, the severe visual outcome, and the non-expression in female carriers. Expression of RPGR mutations in this particular region appears to be relatively homogeneous and predisposed to cones

    Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    Get PDF
    Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’ ’ principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several geneti

    A common supersolid low-density skin sliperizing ice and toughening water surface

    Full text link
    Skins of water and ice share the same attribute of supersolidity characterized by the identical H-O vibration frequency of 3450 cm-1. Molecular undercoordination and inter-electron-pair repulsion shortens the H-O bond and lengthen the O:H nonbond, leading to a dual process of nonbonding electron polarization. This relaxation-polarization process enhances the dipole moment, elasticity,viscosity, thermal stability of these skins with 25% density loss, which is responsible for the hydrophobicity and toughness of water skin and for the slippery of ice.Comment: arXiv admin note: text overlap with arXiv:1401.804

    AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia

    Get PDF
    Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia
    corecore