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Non-bonded potentials are included in most force fields and therefore widely used in

classical molecular dynamics (MD) simulations of materials and interfacial phenom-

ena. It is commonplace to truncate these potentials for computational e�ciency based

on the assumption that errors are negligible for reasonable cuto↵s or compensated for

by adjusting other interaction parameters. Arising from a metadynamics study of the

wetting transition of water on a solid substrate we find that the influence of the cuto↵

is unexpectedly strong and can change the character of the wetting transition from

continuous to first order by creating artificial metastable wetting states. Common

cuto↵ corrections such as the use of a force switching function, a shifted potential

or a shifted force do not avoid this. Such a qualitative di↵erence urges caution and

suggests that using truncated non-bonded potentials can induce unphysical behavior

that cannot be fully accounted for by adjusting other interaction parameters.
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Short- to medium-range potentials such as the Lennard-Jones1 or the Buckingham2 po-15

tential are the backbone of classical MD simulations. They represent Pauli repulsion as16

well as non-directional dispersion attraction and there exist multiple flavors implemented17

in most MD codes under the term of non-bonded interactions. In practice there is a need18

to truncate these potentials since the number of neighbors that have to be considered for19

each entity grows enormously, drastically increasing the computational cost for the force20

calculation. Truncating between rc = 2.5 and 3.5�, where � is the characteristic interaction21

range, is a very common practice in MD studies3 and has become the minimum standard,22

assuming that errors arising from this are small enough. Several studies have reported that23

with these settings significant problems can arise. For instance the truncation can alter24

the phase diagram of the Lennard-Jones system4,5 or yield di↵erent values for interfacial25

free energies6–10. These e↵ects are quantitative in nature, meaning that they can in certain26

circumstances be analytically corrected for11–13 or compensated for by other interaction pa-27

rameters such as interaction strength or interaction range. The latter is important for the28

development of force fields where non-bonded potentials are often included and the cuto↵29

can be seen as another fitting parameter. Naturally, a parametrization with a small cuto↵30

would be preferred to another one if they deliver equal accuracy. This however is only true31

in the assumption that the underlying physical characteristics that are created by truncated32

and longer ranging potentials are the same.333435

In this work we investigated the influence of the cuto↵ for the interfacial phenomenon36

of water-wetting on a solid substrate. We found that the e↵ect of the cuto↵ of the water-37

substrate interaction was not only unexpectedly strong, but also changed the fundamental38

physics of the wetting transition in an unprecedented way by creating metastable wetting39

states that have also never been seen in experiments. We show that proposed cuto↵ correc-40

tions such as the use of a force switching function, a shifted potential or a shifted force did41

not fix this and could even worsen the e↵ect. This finding shows that atomistic simulations42

of interfaces need to be treated with great care since unphysical behavior could occur and43

easily remain undetected. This is particularly relevant since a large number of MD studies44

using truncated potentials are reported each year. Our results suggest the use of much45

larger-than-common cuto↵s or long-range versions of non-bonded potentials in MD studies46

of wetting and interfacial phenomena.47

We investigated two droplets comprised of 3000 and 18000 water molecules which were48
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FIG. 1. a) Side view of the two wetting states for the small droplet. Water is blue and surface

atoms are gray. b) Temperature of the wetting transition Tw (points) versus cuto↵ radius rc and

fit (red line). The Tw were obtained from the free energy profiles (see text) and we estimate errors

to be ±3 K. T0 is the converged wetting temperature.

represented by the coarse-grained mW model14, on top of a rigid, pristine fcc(100) surface49

(lattice parameter 4.15 Å). Whilst this substrate does not aim at representing any partic-50

ular material, similar systems have been used to study ice nucleation15–18 or water-metal51

interfaces19,20. The simulation cell had dimensions 17 ⇥ 17 ⇥ 11 nm3 which is enough to52

avoid interaction of the water molecules with their periodic images for all wetting states.53

Even though the liquid is rather non-volatile even at the highest temperature considered,54

we employed a reflective wall at the top of the cell to avoid evaporation and mimic experi-55

mental conditions. Our simulations were performed with the LAMMPS code21, integrating56

the equations of motion with a timestep of 10 fs. This rather large timestep is commonly57

used in combination with the mW model and is acceptable for our system since during NVE58

simulations the total energy drift was found to be only about 2⇥10�9 eV per water molecule59

per ps. In addition, we verified that we obtain the same results using standard protocols for60

updating the neighbor lists compared with unconditionally updating them every timestep.61

All production simulations were performed in the NVT ensemble with constant tempera-62

ture maintained by a ten-fold Nosé-Hoover chain22 with a relaxation time of 1 ps. The63
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FIG. 2. Free energy profiles of wetting for di↵erent cuto↵s in a small temperature range around

the respective transition temperature Tw (generally at or near the central column for each system).

As collective variable we chose the center of mass of the water droplet (COMz, substrate at z = 0).

We note that for the largest cuto↵ of 8� the temperature range is slightly larger to highlight the

shape of the free energy profile for complete and partial wetting.

substrate-water interaction was given by a distance (r) dependent Lennard-Jones potential64

ULJ(r) = 4✏

⇣�
r

⌘12

�
⇣�
r

⌘6
�

(1)

with ✏ = 29.5 meV, � = 2.5 Å truncated at a cuto↵ rc. This resulted in a maximum65

interaction energy of 154 meV for an adsorbed water monomer (weakly depending on the66

cuto↵). Additionally we performed well-tempered metadynamics simulations23,24 for the67

smaller droplet with the PLUMED2 code25. In these simulations the Gaussian height,68

width, bias-factor and deposition stride were 2.16 meV, 0.15 Å, 20 and 20 ps respectively.69

Metadynamics is usually applied to drive rare events such as nucleation26–29 or protein70

folding30,31. In our systems, this method helped to uncover the underlying free energy71

profile of wetting.72

We studied the wetting behavior of the larger droplet by performing standard MD runs73

at di↵erent temperatures first. As starting configurations we chose either a flat water film74

in direct contact or a spherical droplet placed above the substrate. Within at most 5 ns75
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the simulation was equilibrated and a seemingly stable configuration was reached, where76

the water is either wetting (contact angle ✓ = 0�) or partially wetting (0� < ✓ < 180�).77

An illustration of the two wetting states can be found in figure 1a. Initially we employed78

a radial cuto↵ at rc = 3.0� for the water-substrate interaction. With this setting we found79

that interestingly a wetting transition happened at finite angle ✓0 ⇡ 23�, i.e. a smaller80

non-zero contact angle was not possible. This behavior cannot be explained by the standard81

Young’s equation.82

However, upon increasing the cuto↵ we found that the wetting behavior drastically83

changed. First, the wetting temperature Tw at which the wetting transition took place84

increased as we increased the cuto↵ (figure 1b). Whilst Tw shows a clear convergence behav-85

ior with rc, it is unexpectedly slow. A reasonably converged wetting temperature T0 is only86

reached for rc > 7�. Second, we noticed that for an increasing cuto↵ the minimum possible87

contact angle ✓0 got smaller and eventually vanished. Most importantly, we also found that88

for temperatures around Tw the stable configuration that was reached after the 5 ns could89

depend on the starting configuration for smaller cuto↵s, while for larger rc it always reached90

the same state. This suggests that for small rc we actually found metastable wetting states91

that are absent for large rc. This also means that Tw cannot naively be defined through92

visual analysis of trajectories at di↵erent temperatures but needs to be defined by the free93

energy of wetting. For a first order phase transition we define Tw to be the temperature94

where the two basins (corresponding to wetting and partial wetting) have the same free95

energy. For a continuous phase transition Tw is the temperature where the single basin96

represents a contact angle of ✓ = 0� for T < Tw and ✓ > 0� for T > Tw.97

Understanding the character of these wetting states with standard MD can prove di�cult98

as the dependence on the starting configuration always leaves doubt on the outcome of99

the equilibrated configuration obtained from it. To clarify, we show the results from the100

metadynamics simulations in figure 2. As a collective variable we chose the z-component of101

the center of mass of the water droplet (COMz), where z is the surface normal direction.102

While this choice is not equivalent to the contact angle (as they are related in a non-linear103

manner) it is clear that significantly di↵erent values for COMz correspond to di↵erent contact104

angles and can therefore distinguish the di↵erent wetting states. For the smallest cuto↵ at105

Tw and around we found that two basins coexist, one being the flat film (COMz ⇡ 4 Å)106

and the other being a droplet with certain contact angle (COMz & 5 Å). These two states107
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are separated by a significant barrier larger than 20 kBT , which explains why we observed108

metastable states in the unbiased simulations for small rc. This corresponds to a first-109

order phase transition between the wetting states. The occurrence of a minimum possible110

contact angle ✓0 is explained by the existence of the second basin, which does not approach111

the wetting basin, but rather becomes less stable as temperature changes. However, this112

character faded as we increased rc. The barrier became smaller and the distance between113

the basins got smaller. For the largest cuto↵ investigated (8�) we clearly see that only a114

single basin exists that changes its position with temperature. As a result no metastable115

wetting states exist and the phase transition is continuous. We note that in this case the116

estimate of Tw is more di�cult than for the first order transitions, however in this work we117

aim at presenting qualitative results and from figure 2 it is clear that Tw is higher than for118

the smaller cuto↵s.119

Only the results for the largest cuto↵ are in agreement with the fact that water wetting120

transitions are generally continuous when probed in experiments32,33 and finite-angle wetting121

transitions have, to the best of our knowledge, never been observed experimentally. There-122

fore, the correct qualitative wetting behavior in our system is not achieved with standard123

cuto↵s and if undetected could potentially lead to false conclusions. Di↵erences between124

short and long-ranged interactions have been highlighted for other interfacial phenomena,125

such as drying34 or grain boundary melting35.126127

We further study the e↵ect of the most commonly used correction schemes to cuto↵s:128

1. A shifted potential (sp) which ensures that the value of the potential energy U does

not jump at the cuto↵ distance, given by:

Usp(r) = ULJ(r)� ULJ(rc) (2)

The corresponding force F remains unaltered:

Fsp(r) = FLJ(r) (3)

2. A switching function (switch) which brings the force to zero between an inner rc,1 and

an outer cuto↵ rc,2 (we choose 3 and 4 �):

Fswitch(r) = FLJ(r) r  rc,1 (4)

Fswitch(r) =
3X

k=0

Ck(r � rc,1)
k rc,1 < r  rc,2
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FIG. 3. Free energy profiles of wetting approximately at the transition temperature with uncor-

rected setup (cut) and for di↵erent correction schemes [shifted potential (sp), force switch (switch)

and shifted force (sf)] applied with a cuto↵ at 3�. None of the schemes show the correct behavior,

which is shown in figure 2 to be a single basin.

where Ck are constants determined to ensure a smooth behavior21.129

3. A shifted-force potential (sf), which ensures that force and potential do not jump:

Usf(r) = ULJ(r)� ULJ(rc)� (r � rc)FLJ(rc) (5)

Fsf(r) = FLJ(r)� FLJ(rc)

The latter approach was found to give good results for a homogeneous system and even130

allowed for a reduction of the cuto↵36. Our results for these three corrections can be found in131

figure 3. Unsurprisingly the shifted potential does not yield any significant di↵erence over the132

plain cuto↵ since forces remain unaltered. The smooth cuto↵ via switching function seems133

to improve the situation, however the fact that the transition temperature lies between the134

ones we found for a plain cuto↵ at 3 and 4� suggests that the improvement stems from the135

e↵ectively increased interaction range rather than the fact that the force vanishes smoothly.136

Interestingly, the shifted force with the same cuto↵ performs worst out of all candidates as137

the barrier increases by a factor of two, which increases the likelihood that simulations are138

performed in the metastable state without realizing it. The fact that none of the considered139

correction schemes significantly improved the character of the wetting free energy profile140
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leads us to conclude that it is not the way in which the cutting is done that matters most,141

but rather the e↵ective cuto↵ distance as well as the overall interaction strength at that142

distance.143

As an initial attempt to understand the results obtained we looked at the potential144

energies of the various systems with the di↵erent cuto↵s considered. This, however, did145

not reveal any obvious explanation. However, one possible interpretation for the creation146

of metastable states in our systems with shorter cuto↵ can be obtained by considering147

the droplet state (not assuming anything about the stability relative to the film state).148

For a transition towards the film state, there needs to be thermal fluctuations of water149

molecules that are above the contact layer in the downwards direction (the fact that COMz150

has proven a good reaction coordinate supports this statement). With an infinite interaction151

range all molecules that are loosing height contribute to these fluctuations since they have152

an interaction with the substrate. Therefore we expect the interaction energy to change153

monotonically and the free energy to follow monotonically either up or down depending on154

the balance of the interfacial free energies (see figure 2, rc = 8�). But if the interaction155

range is finite, not all molecules contribute to an increased interaction with the substrate156

even if they decrease their height (and subsequently weaken the water-water interaction157

of the system by leading to deviations from a perfect spherical droplet). In other words,158

there is a minimum distance from the substrate that has to be surpassed by a molecule159

for it to contribute to a fluctuation increasing the interaction energy, otherwise it will (on160

average) actually decrease the total interaction energy. This minimum fluctuation for a161

single molecule translates into the macroscopic states (droplet and film) being connected by162

a barrier shaped free energy profile rather than a monotonic one (see figure 2, rc = 3�). The163

entropic contributions to the free energy are unlikely to change this, since they are essentially164

dominated by the environment a molecule is in (quasi-static contact layer or quasi-liquid165

water on top). The entropic change between these two states will be monotonic for a single166

water molecule and therefore also for the whole droplet.167

Finding a general recipe for how to avoid such unphysical wetting states is di�cult.168

Other aspects like e.g. the substrate density or the liquid-liquid interaction strength will169

have an influence on how strongly the fluctuations in the droplet state are a↵ected by rc.170

Generally, cuto↵s that are deemed acceptable from the inter-molecular perspective do not171

necessarily mean that the interaction between macroscopic states such as a film/droplet and172
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a substrate is su�ciently captured. This is especially important in an interfacial simulation173

setting such as a slab, where a cuto↵-caused change in interaction from the substrate side is174

not compensated by an equal change from the vacuum side. Consequently, only employing175

much larger cuto↵s or techniques to calculate the long-range part of the dispersion force37–39176

can ensure that unphysical e↵ects are avoided. A minimal sanity check for future wetting177

studies could be to start simulations from both a wetting film and a spherical liquid snapshot.178

If both of them end up in the same configuration the existence of an unphysical metastable179

wetting state is unlikely.180

In light of the vast amount of work that is done in the MD community using similar181

interactions, our findings urge extreme caution when dealing with truncated non-bonded182

potentials in simulations of interfacial phenomena. We have seen both quantitative and183

qualitative di↵erences for the wetting transition. The former could be accounted for by184

changing other interaction parameters to reproduce the transition at the right temperature185

T0. This assumption is fundamental to fitting force fields with truncated potentials to186

obtain quantitative agreement with e.g. experimental values. But it does not hold for the187

character of the transition because it arises purely from the value of the cuto↵ itself. If188

the resulting metastability of states remains undetected, the use of truncated interaction189

potentials could lead to wrong inferences about physical properties being made. While190

this conclusion has resulted from a simulation of wetting, similar implications could hold191

for other interfacial phenomena such as capillary flow40,41, evaporation/condensation42,43,192

mixtures44–46 or heterogeneous nucleation47–51 where it is commonplace to use truncated193

interactions.194
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