456 research outputs found

    Spin-1 Antiferromagnetic Heisenberg Chains in an External Staggered Field

    Full text link
    We present in this paper a nonlinear sigma-model analysis of a spin-1 antiferromagnetic Heisenberg chain in an external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for the staggered magnetization curve, the core of the paper is a novel calculation, at the tree level, of the Green functions of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon continuum appears as well whose weight is a stedily increasing function of the applied field, while the weight of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is derived and discussed. A detailed comparison with the present experimental and numerical (DMRG) status of the art as well as with previous analytical approaches is also made.Comment: 23 pages, 3 figures, LaTe

    Coexistence of Haldane gap excitations and long-range order in R_2BaNiO_5 (RR=rare earth)

    Full text link
    R2BaNiO5R_2BaNiO_5 (R=R= rare earth) quasi-1-D antiferromagnets are structurally equivalent to the well-studied 1-D S=1 Haldane-gap compound Y_2BaNiO_5. Unlike the Y-nickelate though, these materials undergo 3-D magnetic ordering at finite temperatures. Recent inelastic neutron scattering studies of Pr_2BaNiO_5 and (Nd_{x}Y_{1-x})_2BaNiO_5 revealed purely 1-dimensional gap excitations that propagate exclusively on the Ni-chains and are strikingly similar to Haldane gap modes in Y_2BaNiO_5. In the ordered phase these excitations survive and actually coexist with conventional spin waves. Below TNT_{N} the gap energy increases and scales as the square of the ordered moment on the Ni sites. The results suggest that the Haldane singlet ground state of the Ni-chains is not fully destroyed by N\'{e}el ordering.Comment: Invited paper for the International Conference on Neutron Scattering, Toronto, Canada, August 17-21, 199

    Extracting the hierarchical organization of complex systems

    Full text link
    Extracting understanding from the growing ``sea'' of biological and socio-economic data is one of the most pressing scientific challenges facing us. Here, we introduce and validate an unsupervised method that is able to accurately extract the hierarchical organization of complex biological, social, and technological networks. We define an ensemble of hierarchically nested random graphs, which we use to validate the method. We then apply our method to real-world networks, including the air-transportation network, an electronic circuit, an email exchange network, and metabolic networks. We find that our method enables us to obtain an accurate multi-scale descriptions of a complex system.Comment: Figures in screen resolution. Version with full resolution figures available at http://amaral.chem-eng.northwestern.edu/Publications/Papers/sales-pardo-2007.pd

    Imaging small animal whole-body dynamics by single-impulse panoramic photoacoustic computed tomography

    Get PDF
    Small animal whole-body imaging, providing physiological, pathological, and phenotypical insights into biological processes, is indispensable in preclinical research. With high spatiotemporal resolution and functional contrast, small animal imaging can visualize biological dynamics in vivo at whole-body scale, which can advance both fundamental biology and translational medicine. However, current non-optical imaging techniques lack either spatiotemporal resolution or functional contrasts, and pure optical imaging suffers from either shallow penetration (up to ~1 mm) or a poor resolution-to-depth ratio (~1/3). Here, we present a standalone system, termed single-impulse panoramic photoacoustic computed tomography (SIP-PACT), which overcomes all the above limitations. Our technology, with unprecedented performance, is envisioned to complement existing modalities for imaging entire small animals. As an optical imaging modality, SIP-PACT captures the high molecular contrast of endogenous substances such as hemoglobin, melanin, and lipid, as well as exogenous biomarkers, at the whole animal scale with full-view fidelity. Unlike other optical imaging methods, SIP-PACT sees through ~5 cm of tissue in vivo, and acquires cross-sectional images with an in-plane resolution of ~100 Îźm. Such capabilities allow us to image, for the first time, mouse wholebody dynamics in real time with clear sub-organ anatomical and functional details and without motion artifacts. SIPPACT can capture transients of whole-body oxygen saturation and pulse wave propagation in vivo without labeling. In sum, we expect widespread applications of SIP-PACT as a whole-body imaging tool for small animals in fundamental biology, pharmacology, pathology, oncology, and other areas

    An experimental measurement of the staggered magnetization curve for a Haldane spin chain

    Full text link
    Long-range magnetic ordering in R_2 Ba Ni O_5 (R=magnetic rare earth) quasi-1-dimensional mixed-spin antiferromagnets is described by a simple mean-field model that is based on the intrinsic staggered magnetization function of isolated Haldane spin chains for the Ni-subsystem, and single-ion magnetization functions for the rare earth ions. The model is applied to new experimental results obtained in powder diffraction experiments on Nd_2 Ba Ni O_5 and Nd Y Ba Ni O_5, and to previously published diffraction data for Er_2 Ba Ni O_5. From this analysis we extract the bare staggered magnetization curve for Haldane spin chains in these compounds.Comment: some revisions in text and figures 5 pages, 2 figures, PRL accepted for publicatio

    Recent advances in bibliometric indexes and the PaperRank problem

    Full text link
    Bibliometric indexes are customary used in evaluating the impact of scientific research, even though it is very well known that in different research areas they may range in very different intervals. Sometimes, this is evident even within a single given field of investigation making very difficult (and inaccurate) the assessment of scientific papers. On the other hand, the problem can be recast in the same framework which has allowed to efficiently cope with the ordering of web-pages, i.e., to formulate the PageRank of Google. For this reason, we call such problem the PaperRank problem, here solved by using a similar approach to that employed by PageRank. The obtained solution, which is mathematically grounded, will be used to compare the usual heuristics of the number of citations with a new one here proposed. Some numerical tests show that the new heuristics is much more reliable than the currently used ones, based on the bare number of citations. Moreover, we show that our model improves on recently proposed ones

    Magnetic excitations in coupled Haldane spin chains near the quantum critical point

    Full text link
    Two quasi-1-dimensional S=1 quantum antiferromagnetic materials, PbNi2V2O8 and SrNi2V2O8, are studied by inelastic neutron scattering on powder samples. While magnetic interactions in the two systems are found to be very similar, subtle differences in inter-chain interaction strengths and magnetic anisotropy are detected. The latter are shown to be responsible for qualitatively different ground state properties: magnetic long-range order in SrNi2V2O8 and disordered ``spin liquid'' Haldane-gap state in PbNi2V2O8.Comment: 15 figures, Figs. 5,9, and 10 in color. Some figures in JPEG format. Complete PostScript and PDF available from http://papillon.phy.bnl.gov/publicat.ht

    Structural efficiency of percolation landscapes in flow networks

    Get PDF
    Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a "hairy ball", so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.Comment: 8 pages, 5 figure

    Pinning and switching of magnetic moments in bilayer graphene

    Full text link
    We examine the magnetic properties of the localized states induced by lattice vacancies in bilayer graphene with an unrestricted Hartree-Fock calculation. We show that with realistic values of the parameters and for experimentally accessible gate voltages we can have a magnetic switching between an unpolarized and a fully polarized system.Comment: 9 pages, 4 figure

    Magnetic ordering, spin waves, and Haldane gap excitations in (Nd_x Y_{1-x})_2 Ba Ni O_5 linear-chain mixed-spin antiferromagnets

    Full text link
    Linear-chain nickelates with the composition (Nd_x Y_{1-x})_2 Ba Ni O_5 (x=1, x=0.75, x=0.5, and x=0.25) are studied in a series of neutron scattering experiments. Powder diffraction is used to determine the temperature dependence of the magnetic structure in all four systems. Single-crystal inelastic neutron scattering is employed to investigate the temperature dependence of the Haldane-gap excitations and low-energy spin waves in the x=1 compound Nd_2 Ba Ni O_5. The results of these experiments are discussed in the context of the ``Haldane chain in a staggered field'' model for R_2 Ba Ni O_5 systems, and quantitative agreement with theory is obtained.Comment: Major rewriting and inclusion of new experimental data 30 pages, 14 figure
    • …
    corecore