424 research outputs found

    Partially Composite Higgs in Supersymmetry

    Full text link
    We propose a framework for natural breaking of electroweak symmetry in supersymmetric models, where elementary Higgs fields are semi-perturbatively coupled to a strong superconformal sector. The Higgs VEVs break conformal symmetry in the strong sector at the TeV scale, and the strong sector in turn gives important contributions to the Higgs potential, giving rise to a kind of Higgs bootstrap. A Higgs with mass 125\GeV can be accommodated without any fine tuning. A Higgsino mass of order the Higgs mass is also dynamically generated in these models. The masses in the strong sector generically violate custodial symmetry, and a good precision electroweak fit requires tuning of order ∌10\sim 10%. The strong sector has an approximately supersymmetric spectrum of hadrons at the TeV scale that can be observed by looking for a peak in the WZWZ invariant mass distribution, as well as final states containing multiple WW, ZZ, and Higgs bosons. The models also generically predict large corrections (either enhancement or suppression) to the h \to \ga\ga width.Comment: 31 page

    The Two Faces of Anomaly Mediation

    Get PDF
    Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking which appears in almost every theory of supergravity. In this paper, we show that anomaly mediation really consists of two physically distinct phenomena, which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski space, generating soft masses proportional to the gravitino mass. Kahler mediation arises when visible sector fields have linear couplings to SUSY breaking in the Kahler potential, generating soft masses proportional to beta function coefficients. In the literature, these two phenomena are lumped together under the name "anomaly mediation", but here we demonstrate that they can be physically disentangled by measuring associated couplings to the goldstino. In particular, we use the example of gaugino soft masses to show that gravitino mediation generates soft masses without corresponding goldstino couplings. This result naively violates the goldstino equivalence theorem but is in fact necessary for supercurrent conservation in AdS space. Since gravitino mediation persists even when the visible sector is sequestered from SUSY breaking, we can use the absence of goldstino couplings as an unambiguous definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in introduction and appendix; v3, JHEP versio

    Spontaneous Parity Violation in SUSY Strong Gauge Theory

    Full text link
    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest two new models. The first model shows confinement, and the second model has a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. The second model also induces spontaneous supersymmetry breaking.Comment: 14 page

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    Leptogenesis, Dark Matter and Higgs Phenomenology at TeV

    Get PDF
    We propose an interesting model of neutrino masses to realize leptogenesis and dark matter at the TeV scale. A real scalar is introduced to naturally realize the Majorana masses of the right-handed neutrinos. We also include a new Higgs doublet that contributes to the dark matter of the universe. The neutrino masses come from the vacuum expectation value of the triplet Higgs scalar. The right-handed neutrinos are not constrained by the neutrino masses and hence they could generate leptogenesis at the TeV scale without subscribing to resonant leptogenesis. In our model, all new particles could be observable at the forthcoming Large Hardon Collider or the proposed future International Linear Collider.Comment: 7 pages, 3 figures. References added. Accepted by NP

    Energy's and amplitudes' positivity

    Get PDF
    In QFT, the null energy condition (NEC) for a classical field configuration is usually associated with that configuration's stability against small perturbations, and with the sub-luminality of these. Here, we exhibit an effective field theory that allows for stable NEC-violating solutions with exactly luminal excitations only. The model is the recently introduced `galileon', or more precisely its conformally invariant version. We show that the theory's low-energy S-matrix obeys standard positivity as implied by dispersion relations. However we also show that if the relevant NEC-violating solution is inside the effective theory, then other (generic) solutions allow for superluminal signal propagation. While the usual association between sub-luminality and positivity is not obeyed by our example, that between NEC and sub-luminality is, albeit in a less direct way than usual.Comment: 21 pages. v2: Typos in eq. (2.41) and (2.41) corrected; discussion of section 2.3 modified accordingly. Other sections and conclusions unchanged. Matches the Erratum published in JHE

    Flavor in Minimal Conformal Technicolor

    Full text link
    We construct a complete, realistic, and natural UV completion of minimal conformal technicolor that explains the origin of quark and lepton masses and mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The exchange of heavy scalar doublets generates higher-dimension interactions between technifermions and quarks and leptons that give rise to quark and lepton masses at the TeV scale. Obtaining a sufficiently large top quark mass requires strong dynamics at the supersymmetry breaking scale in both the top and technicolor sectors. This is natural if the theory above the supersymmetry breaking also has strong conformal dynamics. We present two models in which the strong top dynamics is realized in different ways. In both models, constraints from flavor-changing effects can be easily satisfied. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino. We argue that this light gaugino is a general consequence of conformal technicolor embedded into a supersymmetric theory. If the gaugino has mass below the TeV scale it will give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde

    Supersymmetric Model of Neutrino Mass and Leptogenesis with String-Scale Unification

    Full text link
    Adjoint supermultiplets (1,3,0) and (8,1,0) modify the evolution of gauge couplings. If the unification of gauge couplings occurs at the string scale, their masses are fixed at around 101310^{13} GeV. This scale coincides with expected gaugino condensation scale in the hidden sector Mstring2/3m3/21/3∌1013M_{string}^{2/3} m^{1/3}_{3/2} \sim 10^{13} GeV. We show how neutrino masses arise in this unified model which naturally explain the present atmospheric and solar neutrino data. The out-of-equilibrium decay of the superfield (1,3,0) at 101310^{13} GeV may also lead to a lepton asymmetry which then gets converted into the present observed baryon asymmetry of the Universe.Comment: Improved by including constraints imposed by gravitino decay, new references added, corrections and changes made. Accepted for publication in Physics Letters.

    A Model for Neutrino Masses and Dark Matter

    Get PDF
    We propose a model for neutrino masses that simultaneously results in a new dark matter candidate, the right-handed neutrino. We derive the dark matter abundance in this model, show how the hierarchy of neutrino masses is obtained, and verify that the model is compatible with existing experimental results. The model provides an economical method of unifying two seemingly separate puzzles in contemporary particle physics and cosmology.Comment: 4 pages, submitted to PR
    • 

    corecore