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CH1015 Lausanne, Switzerland

c Scuola Normale Superiore,

Piazza dei Cavalieri 7, 56126 Pisa, Italy

d Scuola Internazionale di Studi Superiori Avanzati,

Via Beirut 2-4, I-34151 Trieste, Italy

Abstract

In QFT, the null energy condition (NEC) for a classical field configuration is usually
associated with that configuration’s stability against small perturbations, and with the sub-
luminality of these. Here, we exhibit an effective field theory that allows for stable NEC-
violating solutions with exactly luminal excitations only. The model is the recently in-
troduced ‘galileon’, or more precisely its conformally invariant version. We show that the
theory’s low-energy S-matrix obeys standard positivity as implied by dispersion relations.
However we also show that if the relevant NEC-violating solution is inside the effective the-
ory, then other (generic) solutions allow for superluminal signal propagation. While the
usual association between sub-luminality and positivity is not obeyed by our example, that
between NEC and sub-luminality is, albeit in a less direct way than usual.

1 Introduction, and relation to previous work

Of all energy conditions of general relativity (GR), the ‘null’ one stands out as the best defined—
thus the most likely to follow from fundamental properties of well-behaved physical systems. The
reason is that the null energy condition (NEC),

Tµν nµnν ≥ 0 for all null nµ’s , (1)

is saturated by the cosmological constant contribution’s to Tµν . It is therefore impossible to
violate the NEC by adding a suitably negative c.c. to an healthy system, or conversely, to obey
it by adding a large positive c.c. to an otherwise negative-energy system. This is not the case for
other energy conditions. One could postulate that the latter be obeyed by the “non-cosmological
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constant part” of Tµν , but the splitting between the cosmological constant and everything else is
at best non-local in field space and thus in real space—in the sense that it cannot be performed
on the basis of local observations—and more likely ill-defined.

1.1 A no-go theorem. . .

Since the value of the c.c. does not affect the behavior of a theory at distances smaller than
the curvature radius—and at all if we decouple gravity—it is on the NEC that we should focus
to look for a generic relation with good properties of healthy physical systems. In fact it is
notoriously difficult to violate the NEC while retaining stability. Indeed, it has been shown in
ref. [1] that for a generic effective theory of scalar fields φI 1, the NEC follows from stability
and isotropy, or alternatively from stability and sub-luminality. Explicitly, given the low-energy
effective Lagrangian as a derivative expansion,

L = L
(

φI , ∂φI , ∂∂φI , . . .
)

, (2)

at low energies one can restrict to the lowest-derivative order—at most one derivative per field—
and ignore higher derivative terms,

L → L
(

φI , BIJ
)

, BIJ ≡ ∂µφ
I ∂µφJ . (3)

Then one can relate the derivatives of the Lagrangian w.r.t. the metric to the derivatives of the
Lagrangian w.r.t. the scalars’ derivatives. That is, there is a very direct relation between a generic
solution’s stress-energy tensor, and the kinetic action for small perturbations of the same solution.
One can thus show that if a solution violates the NEC, either (i) it is unstable, or (ii) if it is
stable, both its stress-energy tensor is anistropic, and some of its perturbations are super-luminal.
Conversely, if a solution is stable and has an isotropic stress-energy tensor, or if it stable and
admits sub-luminal excitations only, then it obeys the NEC [1].

The instabilities we are concerned about are those associated with negative kinetic or gradient
energy for the fluctuations, rather than with negative mass terms 2. This is because such insta-
bilities plague all short-wavelength fluctuations, down to the UV cutoff of the theory. The decay
rate is thus extremely fast, dominated by the shortest scales in the theory, and cannot be reliably
computed within the effective theory. Conversely, a standard tachyon-like instability, like Jeans’s
or that associated with the negative mode of a true-vacuum bubble, is dominated by modes with
momenta of order of the tachyonic mass scale, which can be parameterically smaller than the UV
cutoff.

Now, the theorem summarized above crucially relies on neglecting higher-derivative contribu-
tions to the Lagrangian. Is this justified? Usually it is, for higher-derivative terms are irrelevant
at low energies and, perhaps more to the point, if they do become important the derivative expan-
sion is expected to break down—with an infinite tower of even higher-order terms all becoming

1Such a system is quite general. For instance it describes the low-energy dynamics of perfect fluids and solids
[1].

2For background solutions that break Lorentz-invariance spontaneously, the definition of stability may be subtler.
See ref. [1] for a discussion about this point.
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important at the same time. At the level of the classical e.o.m., higher-derivative terms signal
the presence of massive ghost-like degrees of freedom, thus demanding that the effective theory
break down at energies below their masses and effectively making the higher-derivative terms
unimportant within the regime of validity of the effective theory.

1.2 . . . with exceptions

However there can be exceptions to this general logic. The first exception is provided by the
ghost-condensate [2]. There, the fluctuations’ Lagrangian is degenerate (or nearly so) at the
lowest-derivative level, and as a consequence certain higher-derivative terms can be important
at low energies, below the cutoff of the theory. This is consistent with the derivative expansion
because the background solution—the ‘condensate’—spontaneously breaks Lorentz invariance. It
is then higher spatial derivative terms that become important for the fluctuations’ dynamics.
They do not introduce any new ghost-like degrees of freedom at the classical level, and being the
leading source of gradient energy, they change the scaling dimensions of higher-order operators
thus keeping the derivative expansion under control [2]. Indeed the ghost-condensate was used in
ref. [3] to construct a cosmological solution that violates the NEC while being stable and isotropic,
and having (highly) sub-luminal excitations only.

Here we consider a second exception—that provided by the galileon [4]. The model involves a
scalar π enjoying a shift-symmetry on itself as well as on its first derivatives,

π → π + c + bµxµ , (4)

with constant c and bµ. This is reminiscent of the invariance of non-relativistic mechanics under
galilean transformations x(t) → x(t) + x0 + v0t—hence the name of the model. Now, galilean
invariance (4) forces each π in the e.o.m. to be acted upon by at least two derivatives. Absence of
ghosts requires instead that there be no more than two derivatives per field. There is therefore a
preferred set of higher-derivative terms in the Lagrangian—those that yield purely two-derivative
equations of motion for π. Such terms have been classified in ref. [4]. In four spacetime dimensions
there are four: the standard kinetic term

L2 = −1
2
(∂π)2 , (5)

a cubic interaction
L3 = −1

2
(∂π)2�π , (6)

and quartic and quintic ones

L4 ∼ ∂π∂π(∂2π)2 , L5 ∼ ∂π∂π(∂2π)3 , (7)

with suitable Lorentz contractions 3.
Now, if we stick to this particular set of interactions, at the classical level no new ghost-

like degree of freedom shows up in the non-linear regime—by construction. This is a necessary

3Formally, the tadpole π should also be added to this class [4]. However in its presence the trivial configuration
π = 0 is not a solution. We will therefore set it to zero.
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condition for the quantum effective theory not to break down for sizable classical non-linearities.
In fact the model exhibits remarkable properties at the quantum level as well. First, thanks to
galilean invariance, the Lagrangian terms we discussed do not get renormalized upon inclusion
of quantum corrections, nor do the latter generate terms with fewer derivatives, like e.g. (∂π)4

[5]. Second, with a consistent, if not generic choice of counter-terms, our effective theory can be
extrapolated deep into the non-linear regime of classical solutions. Essentially, galilean invariance
allows for a robust disentaglement of large classical non-linearities from large quantum effects. See
ref. [6] for details and discussions about this point.

In summary, the galileon provides us with a classically as well as quantum-mechanically consis-
tent higher-derivative Lagrangian, which can potentially evade the no-go theorem reviewed above.
Analyzing this possibility is the goal of our paper.

2 The NEC-violating solution

For practical purposes and for reasons that will become clear below, it is more convenient to work
with a slight deformation of the theory. We can promote the Poincaré group supplemented by
the galilean transformations (4) (a fifteen-dimensional symmetry group overall) to the conformal
group SO(4, 2) [4]. Indeed, if we think of the conformal group as the subgroup of diffeomorphisms
that leaves the fictitious metric

g(π)
µν (x) ≡ e2π(x)ηµν (8)

conformally flat, then we recognize in eq. (4) the small-π limit of infinitesimal dilations

π(x) → π(λx) + log λ , (9)

and of infinitesimal special conformal transformations

π(x) → π
(

x + (b x2 − 2(b · x)x)
)

− 2bµx
µ . (10)

Then one can show that for each galilean invariant term, there is a corresponding conformally
invariant one that reduces to that for small π. For instance the kinetic and cubic terms (5, 6) get
promoted to

L2 → −1
2
e2π(∂π)2 (11)

L3 → −1
2
(∂π)2�π − 1

4
(∂π)4 . (12)

Such conformally invariant ‘completion’ is most easily constructed by taking suitable curvature
invariants for the metric (8), as described in ref. [4]. Working with the model’s conformal version
makes finding interesting highly symmetric solutions and studying their properties particularly
easy. For instance, there is a deSitter-like solution where the fictitious metric (8) describes (part
of) deSitter space:

eπdS = − 1

H0t
, −∞ < t < 0 . (13)
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Such a solution spontaneously breaks the conformal group SO(4, 2) down to one of its maxi-
mal subgroups, the deSitter group SO(4, 1). The ‘curvature’ scale H0 depends on the model’s
parameters. Starting from a generic linear combination of our Lagrangian terms

L = c2L2 + · · ·+ c5L5 , (14)

where with an abuse of notation by Ln we refer to the conformal versions of the galilean invariants
(5–7), H0 is a solution to the algebraic equation [4]

H2
0

(

− 2c2 + 3c3 H2
0 − 3c4 H4

0 + 3
2
c5 H6

0

)

= 0 . (15)

Notice that, since we work with the dimensionless field π, the lagrangian coefficients are dimen-
sionful: cn ∝ E6−2n. To make conformal invariance explicit, one could conveniently define a
dimensionful dilaton field φ ≡ Meπ, where M is an arbitrary mass scale, and write the lagrangian
in terms of φ and dimensionless couplings c̄n = cnM

2n−6. The action parameterized this way
would not depend explicitly on M , thanks to scale invariance. In section 3 we shall conveniently
pick M ≡ H0. Here we prefer to use the somewhat redundant notation with dimensionful cn for
basically two reasons. First we want to make contact with the non-conformal galileon limit. Sec-
ond, the role of conformal invariance in our dicussion is mostly technical: to simplify computations
and to deliver a simple globally defined solution around which to expand. The lesson about NEC
violation is more general.

Now, let us consider fluctuations about eq. (13). They are exactly luminal, because of the
high degree of symmetry: by construction the full action only involves the fictitious metric (8)
and its curvature invariants. For the background solution we are expanding about, the latter are
proportional to the former, since the background is maximally symmetric. Therefore, although
the solution (13) spontaneously breaks Lorentz invariance, the only background tensor structure
appearing in the fluctations’ action is ηµν . In particular, it is easy to see that the quadratic
Lagrangian for the fluctuation ϕ ≡ π − πdS is

Lϕ = d2
1

H4
0 t

4

[

−1
2
H2

0 t
2(∂ϕ)2 − 1

2
(−4H2

0 )ϕ2
]

, (16)

where the overall normalization factor d2 is [4]

d2 ≡ c2 − 3c3 H2
0 + 9

2
c4 H4

0 − 3c5 H6
0 . (17)

The kinetic term is fixed by the above symmetry considerations, and its normalization by the local
analysis of ref. [4]. The mass term is also enforced by symmetry. The background π configuration
spontaneously break time-translational invariance, t → t + ǫ. The fluctuation ϕ is the associated
Goldstone boson, which has to non-linearly represent the broken symmetry:

ϕ → ϕ + π′
dS(t) · ǫ = ϕ − ǫ

t
. (18)

The variation of the kinetic term under an infinitesimal transformation is non-zero:

δ
(

− 1
2

1
H2

0
t2

(∂ϕ)2
)

=
1

H2
0 t

2
∂µϕ ∂µ ǫ

t
= ǫ · 4ϕ 1

H2
0 t

5
, (19)
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where in the last step we integrated by parts. Then the kinetic term has to be accompanied by a
mass term that compensates for this variation,

δ
(

− 1
2

1
H4

0
t4

m2ϕ2
)

= ǫ · m2ϕ
1

H4
0 t

5
, (20)

which happens precisely for m2 = −4H2
0 . This is obviously the same logic that for spontaneously

broken internal symmetries ensures the masslessness of the associated Goldstone bosons.
Notice that while the fluctuation’s kinetic energy is positive definite for

d2 > 0 , (21)

the mass term always has the wrong sign. However its size is of order of the typical time variation
rate of the background solution. As a consequence ascertaining the solution’s stability is subtler
than for a time-independent one. In fact the very concept of stability is somewhat ambiguous for
a time-dependent solution (see a related discussion in ref. [6]). As to short wave-length perturba-
tions, the solution is certainly stable, for the fluctuations’ kinetic energy is positive, and the mass
term is negligible at high frequencies. For longer wavelengths, we can tentatively define stability
in the following way. For given initial conditions, the fluctuation’s equation of motion yields two
solutions. At zero momentum, one of these will always be the Goldstone solution:

ϕGoldstone ≡ π′
dS(t) · ǫ = −ǫ

t
, (22)

with constant ǫ. If this is the leading solution at late times (t → 0−, in our case), we say that the
background solution πdS is stable. Indeed in such a case any long-wavelength small departures
from the background solution will be diluted away at sufficiently late times, and we will be left
with the background solution itself, slightly translated in time. This is hardly an instability. It
is straightforward to check that for the Lagrangian (16) the Goldstone solution (22) is indeed the
leading one at late times.

In summary, the deSitter solution is stable against small perturbations if d2 defined in eq. (17) is
positive. Also perturbations are exactly luminal, thanks to the solution’s high degree of symmetry.

2.1 The stress-tensor

It remains to be determined whether such a solution can violate the NEC. To answer this question,
we have to compute the stress-energy tensor,

T µν =
2√−g

δSπ

δgµν
. (23)

For a generic π configuration the computation is straightforward, but painful due to the higher-
derivative structure of the Lagrangian. However for our deSitter solution (13) things drastically
simplify, as we now show. The reader not interested in the details of the computation can jump
directly to eq. (52), which expresses the condition on the coefficients ci for the solution to violate
the NEC.
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All conformal-invariant operators are of the form [4]

e(4−2n)π(∂2π)m(∂π)2n−2m ∼ 1

t4
(24)

This is just a consequence of scale-invariance, which is unbroken by the solution:

e2πdS(t) → e2πdS(λt)+2 log λ = e2πdS(t) (25)

Therefore

T µν = τµν 1

t4
, (26)

with a constant and isotropic τµν . Now, conservation of T µν for an homogeneous solution in flat
space is simply

dρ

dt
= 0 , (27)

which implies τ 00 = 0. We are left with the pressure T ij = p δij, which we can get from the trace

3p = T µ
µ , (28)

which in turn we can compute by varying the action just w.r.t. the conformal mode of the metric:

T µ
µ = ηµν 2

δSπ

δgµν

∣

∣

∣

∣

ηµν

=
δSπ

δϕ

∣

∣

∣

∣

ϕ=0

, (29)

where
gµν(x) = e2ϕ(x)ηµν ≡ g(ϕ)

µν (x) . (30)

Now we can use the fact that Sπ is built out of curvature invariants involving the fictitious
metric (8), where π itself appears as the conformal mode. More precisely, suppose we compute
the Ricci tensor for the metric e2πgµν , with gµν generic. We get

Rµν [e
2πg] = Rµν [g] + Rµν [e

2πη, g] , (31)

where by the last term we denote the Ricci tensor for the metric (8), “covariantized” with the met-
ric gµν—precisely what makes up Sπ upon minimal coupling. Actually, to perform the contractions
appearing in Sπ we have to raise one index with the metric e2πgµν :

Rµ
ν [e

2πg] = e−2πRµ
ν [g] + e−2πgµαRαν [e

2πη, g] , (32)

where by Rµ
ν [G] we are denoting GµαRαν [G]. As we mentioned, minimal coupling corresponds to

the replacement

Sπ =

∫

d4x e4πF
(

Rµ
ν [e

2πη]
)

→
∫

d4x
√
−g e4πF

(

e−2πgµαRαν [e
2πη, g]

)

=

∫

d4x
√−g e4πF

(

Rµ
ν [e

2πg] − e−2πRµ
ν [g]

)

(33)
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which for the conformally flat metric (30), at linear order in ϕ becomes

Sπ[π, ϕ] =

∫

d4x e4(π+ϕ)F
(

Rµ
ν [e

2(π+ϕ)η] − e−2πRµ
ν [e

2ϕη]
)

≃ Sπ[π + ϕ, 0] −
∫

d4x e2π ∂F

∂Rµ
ν

Rµ
ν [e

2ϕη]

≃ Sπ[π + ϕ, 0] +

∫

d4xϕ(x)
(

2 ∂µ∂ν + δµ
ν �

)

(

e2π ∂F

∂Rµ
ν

)

(34)

On a solution of the π eom, the first term has vanishing variation w.r.t. ϕ, and we are left just
with the second:

T µ
µ =

(

2 ∂µ∂ν + δµ
ν �

)

(

e2π ∂F

∂Rµ
ν

)

. (35)

The above expression holds for any solution. However in our deSitter case we can simplify this
expression even further. For the deSitter solution,

RdS
µ

ν = 3H2
0δ

µ
ν . (36)

It is straightforward to convince oneself that

∂F

∂Rµ
ν

∣

∣

∣

∣

dS

=
1

12
δµ
ν

dF (RdS
µ

ν)

dH2
0

(37)

Then derivatives in eq. (35) only act on the e2π factor, and we finally get

T µ
µ = − 3

H2
0 t

4

dF (RdS
µ

ν)

dH2
0

(38)

In summary, to compute the pressure, we just have to express the action of π in terms of curvature
invariants of the metric (8), plug in the deSitter solution, and then derive w.r.t. to H2

0 .

2.2 The problem with L3

If we apply eq. (38) to L3, we run into a problem. In order to express L3 in terms of curvature
invariants, on top of R2 and (Rµ

ν)
2 we need the operator [4]

∫

ddx
√−gd

1

d − 4

[

(Rµ
ν)

2

d − 1
− R2

(d − 1)2

]

, (39)

which diverges when d → 4 for generic metric, but is regular for conformally flat metrics gµν =
e2πηµν , for which it reduces to

∫

ddx e(d−4)π
[

(d−2)(3d−4)
2(d−1)

�π(∂π)2 + (d−2)3

2(d−1)
(∂π)4 + (�π)2

]

. (40)

Now, the problem is that to get from eq. (39) to eq. (40), we integrated by parts. This amounts to
neglecting a boundary term, whose coefficient diverges for d → 4. This is fine for asymptotically
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trivial π’s, but for our deSitter solution we have to keep track of the boundary term. Indeed
eq. (39) diverges when computed on a deSitter solution, even though the latter is conformally flat.
The bottom line is that if we want to apply eq. (38) to an action containing L3, we must be more
careful about boundary terms.

We can bypass this problem by treating L3 separately, since the computation of its stress-
energy tensor is straightforward anyway:

∫

d4xL3 → T (3)
µν = 1

2

[

2 ∂µπ∂νπ�π −
(

∂µπ ∂ν(∂π)2 + ∂νπ ∂µ(∂π)2
)

+ ηµν ∂απ ∂α(∂π)2
]

+ 1
4

[

4(∂π)2∂µπ∂νπ − ηµν(∂π)4
]

. (41)

[In computing the first line, which comes from eq. (6), care has to be taken in varying the �,
because it contains a covariant derivative. However this is straightforward to do if we rewrite �π
as 1√

−g
∂µ(

√−g gµν∂νπ).]

In particular, the trace T (3) µ
µ computed on the deSitter solution e2πdS = 1/H2

0 t
2 is

T (3) µ
µ =

3

t4
. (42)

Now we can subtract the L3 contribution from the action, and apply eq. (34) to the remainder.
The first term in eq. (34), which would vanish on-shell for the full action, now can be rewritten
as minus the e.o.m. contribution coming from L3. Combining everything we thus get

T µ
µ = c3 T (3) µ

µ − c3
δL3

δπ
− 3

H2
0 t

4

dF (−3)(RdS
µ

ν)

dH2
0

, (43)

where the last term is the same as eq. (38), applied to the non-L3 part of the action. As to second
term, for the deSitter solution it is

− c3
δL3

δπ
= −c3

[

(�π)2 − ∂µ∂νπ ∂µ∂νπ + ∂µ
(

∂µπ(∂π)2
)]

= −c3
3

t4
, (44)

which exactly cancels the first term. In conclusion, eq. (38) holds on-shell if we restrict it to the
non-L3 part of the action:

T µ
µ = − 3

H2
0 t4

dF (−3)(RdS
µ

ν)

dH2
0

(45)

2.3 The recipe

We are now in a position to check whether there exists a choice for the Lagrangian coefficients
c2, . . . , c5 that makes our deSitter solution (13) violate the NEC without giving up stability. (As
we stressed, absence of superluminality is automatic for this particular solution.) The various
contributions to

F (−3) = c2L2 + c4L4 + c5L5 (46)
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computed on the deSitter solution are [4]

L2 = − 1
12

R = −H2
0 (47)

L4 = 1
24

[

7
36

R3 + R(Rµ
ν)

2 − (Rµ
ν)

3
]

= 55
2
H6

0 (48)

L5 = 1
16

[

93
2·64 R4 − 39

4·62 R2(Rµ
ν)

2 + 5
12

R(Rµ
ν)

3 + 3
16

(

(Rµ
ν)

2
)2 − 3

8
(Rµ

ν)
4
]

= 3
32

H8
0 . (49)

We thus get

p = 1
3
T µ

µ = − 1

H2t4
[

− c2 + 3·55
2

c4 H4
0 + 3

8
c5 H6

0

]

(50)

= − 1

H2
0 t

4

[

− 1
2
c2 − 3

4
c3 H2

0 + 333
4

c4 H4
0

]

, (51)

where in the second step we used the e.o.m. (15). To violate the NEC, since the energy density
vanishes on the de Sitter solution, it is enough to have negative pressure, that is

− 1
2
c2 − 3

4
c3 H2

0 + 333
4

c4 H4
0 > 0 . (52)

On the other hand, for the de Sitter solution to be stable, we need (21), that is

− 3c2 + 3c3 H2
0 − 3

2
c4 H4

0 > 0 , (53)

where we used the e.o.m. (15). Notice that the e.o.m. (15) is the only one of our conditions where
c5 appears. We can thus think of it as determining c5 for given H2

0 and c2, c3, c4. Furthermore,
we can eliminate H2

0 by absorbing it into a redefinition of c2, c3, c4. That is, for the moment we
can work in H2

0 = 1 units and reintroduce H2
0 later by dimensional analysis. Then, combining

eqs. (52) and (53) we get a condition on c4:

1
333

(2c2 + 3c3) < c4 < 2(c3 − c2) . (54)

This interval exists if and only if
c3 > 2

3
· 334

221
c2 . (55)

So, summarizing, here is the recipe for a system that has a stable NEC-violating, de Sitter-like
solution:

1. Pick H2
0 > 0 for the deSitter-like solution;

2. Pick c2;

3. Pick c3 > 2
3
· 334

221
c2/H

2
0 ;

4. Pick c4 in the interval 1
333

(2c2 + 3c3 H2
0 ) < c4 H4

0 < 2(c3 H2
0 − c2) ;

5. c5 is fixed by the e.o.m.: c5 H6
0 = −2

3
(−2c2 + 3c3 H2

0 − 3c4 H4
0 ) ;

6. The desired action is Sπ =
∫

d4x c2L2 + · · · + c5L5 .

Notice that if we want the trivial configuration π = 0 to be stable, so that we can think of
our theory as a standard relativistic QFT constructed about a (perturbatively) stable Poincaré
invariant vacuum state, then at point 2 above we need c2 > 0. This is compatible with everything
else, however.
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3 The quantum theory

So far we focused on classical aspects of our solution. However we also have to impose that it
make sense quantum-mechanically—that is, that it be within the regime of validity of our effective
theory. At first sight, this is not difficult to achieve. The constraints derived in the previous section
are linear in cnH

2(n−2)
0 , and thus can be generically satisfied by choosing

c2 ≡ f 2 , cn>2 = an
f 2

H
2(n−2)
0

. (56)

with arbitrary f 2 and with an = O(1). Now, f 2 appears as an overall multiplicative constant
in the Lagrangian, and therefore its value cannot affect the classical solutions. On the other
hand, quantum-mechanically it formally plays the role of 1/~. The bigger f 2, the smaller the
quantum mechanical effects. Indeed this is made manifest by going to canonical normalization for
π: πc ≡ f π. Then all self-interactions for πc are suppressed by powers of H0 and of f . By keeping
H0 fixed and taking f ≫ H0, we can make quantum effects arbitrarily weak while keeping a given
classical solution unchanged.

Still, the limit f ≫ H0 entails not quite an inconsistency—but a peculiarity of our model.
The problem lies in the softness of 2 → 2 scattering amplitudes at low energies, as we now
explain. It has been pointed in ref. [7], that for an effective theory to be the low-energy limit
of a relativistic microscopic theory obeying the standard properties of the S-matrix (analyticity,
unitarity, Froissart bound), the 2 → 2 forward scattering amplitude for identical particles cannot
go to zero faster than s2 at low energies—and the coefficient of the s2 term has to be positive. Now,
the galileon grossly violates this, before the conformal completion we adopted. This is because
each galilean interaction involves too many derivatives per field (see eqs. (6, 7)). And in fact at
tree-level the 2 → 2 amplitude vanishes exactly in the forward limit (t → 0)—by power counting
it should behave like s3, but crossing symmetry in the forward limit implies parity under s → −s.

The conformal completion can in principle fix this, because it supplements the galileon La-
grangian with interaction terms with fewer derivatives per field [4]. For instance with L3 there is
an associated (∂π)4 term, which has exactly the right structure to yield an s2 contribution to the
scattering amplitude. On the other hand, the conformal version of L4 has too many derivatives,
and that of L5 has to many π’s (as well as too many derivatives), so we can neglect them. So, the
part of the Lagrangian that can contribute an s2 piece to the forward scattering amplitude is (see
eqs. (11, 12))

L ⊃ c2L2 + c3L3

= −1
2
c2 e2π(∂π)2 − 1

2
c3 �π(∂π)2 − 1

4
c3 (∂π)4

→ −1
2
c2 (∂π̃)2 + 1

4
c3(∂π̃)4 + . . . , (57)

where we got the last line after suitable non-linear field redefinitions, and the dots stand for higher
orders in π̃ and derivatives thereof.

We thus see that with our conformally invariant Lagrangian, we can have a positive s2 term
in the low-energy forward 2 → 2 scattering amplitude,

M(s, t → 0) ∼ c3

c2
2

s2 + . . . , (58)
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for positive c3. Notice that c3 > 0 is consistent with our ‘recipe’ of sect. 2.3. The strong coupling
scale associated with this term in the amplitude is

Λ =
(

c2
2/c3

)1/4 ∼
(

fH0)
1/2 . (59)

However, the strong coupling scales associated with higher-order terms can be lower. For instance
the cubic interaction �π(∂π)2 used twice in two trilinear vertices connected by a propagator yields
an s3 + t3 + u3 term (which vanishes in the forward limit but is non-zero otherwise) suppressed
by the scale

Λ′ =
(

c3
2/c

2
3

)1/6 ∼
(

fH2
0)

1/3 . (60)

This is much lower than Λ for f ≫ H0. More systematically, expanding the tree-level Lagrangian
in powers of the canonicallly normalized field πc, we get interactions of the form

Ln,m,q ∼ ∂πc∂πc

(

πc/f
)n(

∂πc/H0f
)2m(

∂∂πc/H
2
0f

)q
, (61)

with 1 ≤ m+ q ≤ 3 and arbitrary n, except for m = 0, q = 1, in which case n = 0. The associated
strong-coupling scales are

Λn,m,q = H0

(

f/H0

)
n+2m+q

n+4m+3q . (62)

For f ≫ H0 the lowest of such scales corresponds to n = m = 0,

Λstrong ≡ Λ0,0,q = H0

(

f/H0

)1/3
, (63)

which is exactly the scale Λ′ of eq. (60).
Now, the fact that the leading low-energy term in the amplitude is weighed by a scale that is

much higher than that weighing higher-order terms is not inconsistent, but suggests that the UV-
completion of the model, if it exists, is weakly coupled. In such a case, the different strong-coupling
scales Λn,m,q do not correspond to any physical scales in the theory—the theory never becomes
strongly coupled—they are just low-energy mirages arising from taking different combinations of
a weak coupling and of the true new physics mass-scale of the theory. This is evident for instance
in the tree-level exchange of a weakly coupled massive particle at low energies:

g2 1

p2 + M2
→ 1

(

M/g
)2 − p2

(

M/g1/2
)4 +

p4

(

M/g1/3
)6 + . . . , p2 ≪ M2 (64)

(as we will see our case suggests a slightly subtler interpretation than this simple example). Now,
because of scale invariance (9) and of eq. (56), the structure of our Lagrangian is

L = f 2 e2π ∂π∂π F
(

e−π∂π/H0, e
−2π∂∂π/H2

0

)

(65)

where the function F is dimensionless, and has no small parameter. Then, it is natural to conjec-
ture that the derivative expansion be controlled by the scale

φ(x) ≡ eπ(x)H0 . (66)
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That is, if we rewrite our classical Lagrangian as

L =
1

g2
· φ4 F̃

(

∂φ/φ2, ∂∂φ/φ3) , g2 ≡ H2
0/f

2 , (67)

it is natural to interpret g as a coupling constant—weak, in the limit f 2 ≫ H2
0—and φ as a

dilaton controlling the mass-scale where the UV-completion enters. If this is correct, then the
weakly coupled limit g ≪ 1 indeed has formally very high strong coupling scale, but this says
nothing about where the effective theory is actually breaking down. New physics has to enter at
the scale φ. For the trivial solution π = 0 we have φ = H0, and the effective theory is valid at
energies below this. For our deSitter solution (13) we have

φdS =
1

|t| , (68)

and the solution itself is outside the effective theory, in the sense that all terms in F̃ above are of
the same order, thus signaling a breakdown of the derivative expansion.

We want to stress that, in fact, we are not forced to this conclusion. If F̃ were an infinite
series—the full derivative expansion—then indeed identifying the UV-completion’s mass scale
would be unambiguous. For instance one could compute the 2 → 2 tree-level scattering amplitude
at all orders in s/φ2 about a φ = const solution. Then the radius of convergence of that series—
the distance of the first non-analyticities from the origin—would define the scale of new physics.
Perhaps more physically, the strong-coupling scale associated with a very high-order term would
be very close to φ, the extra factor of g being diluted by a tiny fractional power (see eq. (64)).
In our case instead F̃ is a finite polynomial, and the identification of the UV-scale is not as
straightforward. For g ≪ 1 quantum effects are small, and the effective theory is unitary up to
energies of order of the strong-coupling scale Λstrong = H0/g

1/3.
We can however put an upper bound on the UV-completion’s scale by means of dispersion

relations, and such a bound turns out to be parameterically smaller than the strong coupling
scale—in agreement with the idea that the UV-completion be weakly coupled. If we assume
analyticity, unitarity, and that the forward 2 → 2 scattering amplitude A(s) ≡ M(s, t → 0) is
bounded by s2 at large s, then we have [7]

A′′(0) =
2

π

∫ ∞

0

σ(s)

s2
ds (69)

where σ(s) is the total cross-section for ππ scattering. With our effective theory we can compute
the left-hand side, and the low-energy contribution to the right-hand one. Since the integrand is
positive, this equation then yields an upper bound ΛUV on the scale where we should stop trusting
our low-energy computations—the cutoff of the effective theory. About the trivial solution π = 0,
φ = H0, the l.h.s. can be got from eq. (58):

A′′(0) ∼ c3

c2
2

=
g2

H4
0

. (70)
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On the other hand the low-energy cross-section is UV-dominated (as befits a derivatively coupled
theory), and in particular at energies above Λ3

0,0,1/Λ2
0,1,0 = H0 it is dominated by the s3 piece in

the amplitude, thus scaling as

σ(s) ∼ g4 s5

H12
0

. (71)

We thus see that in order not to violate eq. (69), the low-energy contribution has to be cut off
below

ΛUV =
H0

g1/4
. (72)

This defines the highest possible energy scale our effective theory can be extrapolated to (under
the assumptions given above). The UV-completion has to enter below this scale. Notice that
ΛUV is parameterically higher than φ = H0, which was the cutoff scale ‘naturally’ suggested by
the structure of eq. (67). This makes our deSitter-like solution consistent with the standard S-
matrix properties of well behaved relativistic theories. Notice also that ΛUV is lower than the
strong-coupling scale,

Λstrong =
H0

g1/3
, (73)

as it should be for the consistency of our estimate.
In general there may be infinitely many more dispersion relations that can constrain further

the structure of the low-energy effective Lagrangian, and set an upper-bound on its cutoff lower
than eq. (72). For instance one could consider n → n scattering amplitudes with n larger than
two. Such constraints are going to be quite cumbersome to work out, and are beyond the scope
of the present paper. On the other hand, in the case of weakly coupled UV-completion further
information can be extracted from the forward 2 → 2 amplitude A(s) [7]. We will not take this
route either—in fact it is straightforward to show that in our case nothing new is learned on the
cutoff of the theory by taking it. Instead, we will consider signal propagation in the presence of
weak background fields. This will turn out to be surprisingly powerful.

4 Retaining causality

Ref. [7] identified a class of derivatively coupled theories for which S-matrix positivity along
the lines of last section implies the sub-luminality of excitations in the presence of non-trivial
background fields. In our case, as we will see in a moment, quite the opposite is true: amplitude
positivity forces c3 to be positive, which in turn makes certain excitations about background fields
super-luminal, unless the cutoff of the theory is low enough. We will use this to constrain the cutoff
of our effective theory. Notice that the analyses of refs. [7, 4] already exhibited the presence of
super-luminal excitations for DGP-like and galileon theories about certain background solutions.
We find it useful however to provide a self-contained similar analysis here, mainly for two reasons.
The first is that we will exhibit superluminality for essentially any static weak-field solution to the
field equations—which eliminates the possibility that perhaps superluminality about a particular
solution just signals that the field cannot be coupled to sources in such a way as to produce that
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solution. The second reason is that we will show that superluminality is gone if the UV cutoff of
the theory is of order 〈φ〉.

To study the propagation of fluctuations about a background solution, it is more convenient
to use φ = H0e

π as field variable. The Lagrangian becomes (see eq. (57))

L =
1

g2

[

− 1

2
(∂φ)2 − c̃3

2

�φ(∂φ)2

φ3
+

c̃3

4

(∂φ)4

φ4
+ . . .

]

, (74)

where g = H0/f , c̃3 ≡ c3H
2
0/f

2, and the dots stand for higher-order terms, coming from L4 and
L5. As clear from last section’s discussion, the dimensionless coefficient c̃3 has to be positive, and
of order unity. Now, consider a background solution φ0(x), and small fluctuations ϕ about it. At
quadratic order the fluctuation Lagrangian is

Lϕ =
1

g2

[

− 1

2
(∂ϕ)2

(

1 + c̃3
�φ0

φ3
0

− c̃3
(∂φ0)

2

φ4
0

)

+ c̃3

(∂µ∂νφ0

φ3
0

− 2
∂µφ0∂

νφ0

φ4
0

)

∂µϕ∂νϕ + . . .

]

≡ − 1

2g2
Gµν ∂µϕ∂νϕ + . . . , (75)

where the dots stand for non-derivative terms (i.e. mass terms) for ϕ, as well as for contributions
from the terms already neglected in eq. (74), and we defined the effective inverse metric Gµν as

Gµν = ηµν
(

1 + c̃3
�φ0

φ3
0

− c̃3
(∂φ0)

2

φ4
0

)

− 2c̃3

(∂µ∂νφ0

φ3
0

− 2
∂µφ0∂

νφ0

φ4
0

)

(76)

The reason why we focus on the kinetic action for ϕ and neglect non-derivative terms, is that the
causal structure is defined by the highest-derivative terms: according to Leray’s theorem [8], for a
Lagrangian of the form (75), ϕ excitations travel along the light-cone of the effective metric Gµν .

We are thus led to analyze the light-cone of the effective metric (76) in the presence of a
non-trivial φ0(x). To be as general as possible, we consider a generic weak vacuum solution φ0(x).
By ‘weak’ we mean that the non-linearities of our action are negligible. Also, for simplicity we
restrict to a static configuration, so that the solution obeys

∇2φ0 ≃ 0 . (77)

The physical situation we have in mind is that we have stationary, localized sources for φ, and
that away from the sources the field is in its linear regime. We generically expect there to be a
stationary point for φ0

4. We zoom in on that point, and choose it as the origin of our coordinate
system. The solution can be Taylor expanded about the origin

φ0(~x) ≃ Φ0

(

1 +
1

2
Aij

xixj

L2

)

, (78)

4This is guaranteed if the source arrangement is minimally inventive. Also such an assumption is not necessary
to proceed, but makes the discussion neater. Indeed a space gradient term, corresponding to a term linear in xj in
eq. (78), gives just a negative definite contribution to Gij in eq. (80), making the light cone even wider.
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where Φ0 is the field value at the origin, L is the typical scale over which the solution varies, and
Aij is a dimensionless matrix with entries of order unity and which, because of Laplace’s equation
(77), is traceless. As we will see, this last property is crucial for our argument.

Now, to impose, as we assumed, that the solution be in a linear regime, we have to demand

L ≫ 1/Φ0 . (79)

Indeed the size of non-linearities in eq. (74) for the terms explicitly kept is of order ∂2/φ2, which
for a configuration like (78) is precisely 1/(LΦ0)

2. The neglected terms in eq. (74) are suppressed
by even higher powers of ∂2/φ2 ∼ 1/(LΦ0)

2—that is why we are allowed to neglect them in the
first place. Not surprisingly, the size of non-linearities 1/(LΦ0)

2 is also controlling the corrections
to ηµν in the inverse metric (76). As long as this is small, the latter can be straightforwardly
inverted to yield the effective metric

Gµν ≃ ηµν + 2c̃3

(

∂µ∂νφ0

φ3
0

− 2
∂µφ0∂νφ0

φ4
0

)

, (80)

where we neglected the correction proportional to ηµν , because it does not affect the light-cone
aperture. That is, at this order we can factor it out of the metric, as an overall conformal factor,
which is irrelevant for our question.

To check whether the light-cone of Gµν includes directions that are super-luminal with respect
to the true Minkwoski light-cone defined by ηµν , we contract Gµν with a generic null direction
nµ = (1, n̂). If nµ turns out to be time-like for Gµν at least for some direction n̂, we know that ϕ
signals can travel superluminally along n̂. For the moment we consider small distances from the
origin, x ≪ L, so that the denominators in (80) can be taken as constant for our solution. We
have

Gµν nµnν ≃ 2c̃3

(LΦ0)2

[

Aij − 2
(Aikx

k)(Ajlx
l)

L2

]

n̂in̂j . (81)

The second term in brackets is always a negative definite matrix, being minus the tensor product
of A · ~x with itself. It thus gives a superluminal contribution in all directions—that is, it tends to
make nµ time-like w.r.t. Gµν regardless of n̂. However at small distances from the origin, x ≪ L,
the second term is negligible with respect to the first. Now, Aij , being traceless, has at least one
negative eigenvalue. The corresponding eigenvector, defines a direction n̂ for which the first term
also gives a superluminal shift in the propagation speed, of order

∆c ∼ 1

(LΦ0)2
(82)

(recall that both c̃3 and Aij are of order one.) We are thus led to the conclusion that a generic
linear solution φ0(x) allows for superluminal excitations, because the effective metric perturbations
propagate in has a light-cone that is broader than that defined by ηµν . We stress that this result
does not depend on the detailed form of the coupling of φ to each individual source. For instance
on whether it couples through a ‘monopole’ φJ , or via dipole ∂µφJµ or even via higher multipoles.
This generalizes the proof of superluminality given in ref. [4] by considering spherical solutions
induced by monopole coupling.

16



The one we just obtained is a purely classical result: at the classical level, to ascertain the
existence of superluminal signals, it is enough to analyze the effective metric (Leray’s theorem).
Upon canonical quantization the causal structure does not change [9], but since we have an effective
theory with a cutoff, to be consistent we have to demand that the superluminal effect we isolated
be measurable within the effective theory. The superluminal shift (82) in the propagation speed
entails superluminal propagation of actual signals if, for a mode of given momentum k propagating
from the origin all the way to L, the gain over a strictly luminal signal is at least of order of one
wavelength. That is, we need

∆c kL ∼ k

Φ0

1

LΦ0
& 1 . (83)

We are restricting to a region of size L around the origin, because that is where our approximations
hold. We will comment below on what happens outside this region. Recall that for the solution to
be linear, we want LΦ0 larger than one. We thus see that the superluminal effect is unobservable
if we restrict to fluctuations with momenta smaller than Φ0. Therefore, if we postulate that the
cutoff of our effective theory is the local value of φ, like the structure of our Lagrangian (67)
naturally suggested, we cannot consistently conclude that the causal structure of the theory is
different than the usual relativistic one.

Nothing new is learned by relaxing the x ≪ L restriction. For a generic linear solution, with a
generic arrangement of sources, the structure of the solution will deviate significantly from eq. (78)
beyond x ∼ L, and full knowledge of the solution will be needed to conclude anything about signal
propagation. However since eq. (78) is a good vacuum solution for x ≫ L as well—non-linear
effects are down by powers of L4/(Φ2

0x
6)—one could study how signals propagate on it for distances

much longer than L. The problem is that the superluminal effect is proportional to the leading
non-linearity, and so the former also rapidly goes to zero at very large x. That is, for a solution
like eq. (78) the superluminal effect is concentrated in a region of size L around the origin.

In summary, if we assume that our effective theory arises as the low-energy limit of a micro-
scopic theory with the standard relativistic causal structure, we are forced to bound its regime of
validity by the local value of φ. Under those assumptions our stable NEC-violating solution of
sect. 2 is therefore untenable.

5 Back to the amplitude

In hindsight, it is natural to ask whether the S-matrix encodes any signs of the superluminal effect
we unveiled. In simpler examples, like those considered in ref. [7], sub-luminality of excitations
about background fields is tied to positivity of forward 2 → 2 amplitudes at order s2. In our case
instead, as we discussed, such positivity is obeyed so long as c3 is positive, yet we have super-
luminality regardless of c3’s sign. In fact, our super-luminal effect relies on the cubic interaction
�π(∂π)2 whose contributes to 2 → 2 amplitudes is of order s3 and vanishes in the forward limit,
being proportional to s3 + t3 + u3. It thus looks like that in order to isolate the term responsible
for super-luminality, we need to consider non-forward amplitudes.

Some form of positivity still holds for non-forward 2 → 2 amplitudes M(s, t). Indeed following
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Martin5 [10], unitarity together with standard properties of Legendre polynomials imply that for
real s

∂n

∂tn
ImM(s + iǫ, 0) ≥ 0 ∀n , (84)

which is a generalization of the optical theorem, ImM(s + iǫ, 0) ∝ σtot > 0. If there is a mass-
gap, M(s + iǫ, t) is analytic in the t-plane, for |t| below threshold6. This means that we can
Taylor-expand M(s + iǫ, t) in t about the origin, and use the inequalities (84) to conclude

ImM(s + iǫ, t) > 0 for t > 0 , (85)

so long as t (now real and positive) is below threshold. We can then run a standard dispersion
argument (see e.g. [7])—this time using analiticity in the s-plane—and show that

∂2

∂s2
M(0, t) =

2

π

∫

ds ImM(s + iǫ, t)

[

1

s3
+

1

(s + t)3

]

> 0 for t > 0 , (86)

where the integral is taken along the cut on the positive real axis, from the threshold to infinity.
Now, in our case there is no mass-gap—the particles we are scattering are themselves massless—

and we have non-analyticities at arbitrarily low s and t. However, we already argued that the
UV-completion of our model must be weakly coupled, with coupling λ ≪ 1. We can then consider
the scattering amplitude at tree-level in λ. Such an amplitude has non-analiticities associated
with the exchange of the UV-completion’s massive states, but it does not have low-energy cuts
associated with multi-massless particle states—these enter at higher order in λ [7]. It thus makes
sense to apply the above dispersion relation to the tree-level amplitude, even in the absence of a
mass gap. The mass-scale playing the role of the gap is then the UV cutoff of the effective theory,
where the UV-completion enters and the first non-analiticities show up.

Now, in our case we assumed that the cutoff of the theory is parameterically higher than H0,
perhaps as high as eq. (72). At intermediate energies, H0 ≪ E ≪ ΛUV, the amplitude is dominated
by the O(s3) terms, and we can neglect the O(s2) ones. The former gets a contribution from the
Lagrangian term we are trying to isolate, �π(∂π)2, but also directly from the quartic galilean
interaction contained in L4. Indeed we can perform a non-linear field redefinition that eliminates
the cubic interaction and yields a quartic term of the form

∂π∂π ∂∂π ∂∂π , (87)

which is precisely the structure of L4. Therefore, unless the L4 contribution accidentally vanishes,
which it does not, we already see that our attempt to connect super-luminality with violation of
amplitude positivity, fails: amplitude positivity can be fixed by a suitable choice of c4, which as we
argued does not affect signal propagation in the presence of weak background fields. However, if
we want our Lagrangian to describe NEC-violating stable solutions, c4 is not completely arbitrary.
It may be that once we impose the conditions of sect. 2.3, positivity turns out to be violated.

5For a recent application see also [11].
6More precisely, as proven in ref. [10], analyticity in (s, t) holds on the product space (|t| < M)× (cut s plane).
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Computing the O(s3) tree-level amplitude is straightforward. The result is

M(s, t) =
3

4

1

c3
2

(

c2
3 − 2 c2c4

)

st(s + t) . (88)

Positivity in the form of eq. (86) is obeyed iff

c2
3 > 2 c2c4 . (89)

Such an inequality is in fact implied by our conditions of sect. 2.3, as manifest from the following
simple algebraic manipulation:

0 ≤ (c3 − 2 c2/H
2
0 )2 = c2

3 − 4
(

c3c2/H
2
0 − c2

2/H
4
0

)

< c2
3 − 2c2c4 , (90)

where in the last step we used item 4. of sect. 2.3.
In conclusion, by assuming that our effective theory can be extrapolated to energies parameter-

ically higher than H0 we find no contradiction with amplitude positivity, even in the non-forward
case. Conversely, absence of superluminal excitations demands the theory to be cut off at H0.

6 Discussion

Our effective theory allows for an isotropic NEC-violating solution that is stable against small
fluctuations. Moreover, signal propagation on this solution is exactly luminal. This is a nice
counterexample to the theorem of ref. [1], which here is violated because one of the hypotheses,
subtly, is. The relevant part of the Lagrangian formally involves higher-derivative terms, yet the
corresponding field equations are second-order.

Still, if the goal was to find a completely sensible relativistic QFT that can violate the NEC
in the semi-classical regime, then we failed. From the standard EFT standpoint, our theory is
perfectly sensible, and the relevant NEC solution is within its regime of validity. Moreover, our
theory obeys standard positivity of 2 → 2 amplitudes, even in the non-forward case—which is a
stronger requirement than purely low-energy consistency [7]. Nevertheless, if we start from the
vacuum and excite a generic weak field configuration, small excitations about this background will
now propagate super-luminally. The presence of super-luminal excitations signals that the causal
structure of the theory is not the standard Lorentz-invariant one. As a consequence our effective
theory cannot arise as the low energy limit of a Lorentz-invariant UV-complete local QFT, for
which micro-causality has to hold as an exact (i.e., non-perturbative) operator statement [7, 9].

Now, we can avoid super-luminality if the cutoff of our theory is in fact much lower than
expected. However for such a low cutoff, our NEC-violating solution is outside the effective theory
and thus cannot be trusted. That is: either (i) we believe that the cutoff is high enough to make
room for the NEC-violating solution, but then we have to accept the existence of super-luminal
excitations about other solutions, also inside the effective theory; or (ii) we believe that the cutoff
is low enough to forbid superluminal propagation of signals, but then our NEC-violating solution
is gone as well. Essentially, absence of superluminal excitations demands that all non-linearities be
small: if the cutoff of the theory is the local value of φ, as required by sub-luminality, then all non-
linear terms in eq. (67) have to be small for the solution to be within the effective theory, despite
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what suggested by purely low-energy EFT considerations and even by dispersion relations. This
makes the tension we found particularly robust. It is not an accident of our particular solution,
but rather it is a property of any solutions that crucially rely on non-linearities. Since the NEC
is obeyed by the free part of the Lagrangian, all NEC-violating classical solutions are outside the
regime of the effective theory.

We thus see that there still is a strong tie linking the NEC and subluminality. It is less direct
than in the absence of higher-derivative terms, where it is the NEC-violating solutions themselves
that support superluminal excitations [1], but it appears to be equally tight. It would be interesting
however to understand whether this relation is an accident of our Lagrangian, or whether instead it
is a more general, and thus deeper, fact. For instance, we adopted a conformal modification of the
galileon theory in order to respect positivity at order s2 in the scattering amplitude. However this
requirement by itself does not single out the conformal group SO(4, 2) as the symmetry group of
our theory. We chose it because then with such a high degree of symmetry, finding very symmetric
solutions and studying their properties is immediate. However there are probably other equally
convenient choices—for instance the 5D Poincaré group ISO(4, 1) [4]—and in principle nothing
stops us from lowering the number of symmetry generators, as long as galilean invariance is an
approximate symmetry in the UV. Note that for superluminality to happen, one just needs a non-
vanishing galilean cubic term. In our theory c3 has to be strictly positive for the NEC-violating
solution to be well behaved (sect. 2.3) and for the forward amplitude to be positive at order s2

(sect. 3). It is entirely possible that disentangling the coefficient of the cubic galilean term from
others’ could eliminate superluminality altogether while retaining the good features of our theory
as well as of the NEC-violating solution.

From a more general field theoretical perspective, we find it interesting that in our theory
relativistic dispersion relations involving the 2 → 2 scattering amplitude are not enough to discover
superluminality in the presence of sources. In the simple cases of ref. [7], the link was so direct
that forward dispersion relations were enough to imply sub-luminality about any background
solution. In our case instead, even non-forward ones are obeyed by a theory with superluminal
excitations. We expect that at some level of complexity (for instance one could consider n → n
scattering amplitudes, with n > 2) dispersion relations should encompass the requirement of
subluminality about any background fields. Indeed the sources turning on these backgrounds may
be viewed as fictitious ones—used to construct the generating functional W [J ] from which the
n-point functions 〈φ(x1) . . . φ(xn)〉 are then straightforwardly derived. It is clear then, that the
propagation properties of φ fluctuations about some background field are encoded in these n-point
functions, and thus in the S-matrix elements. It would be interesting to understand for a generic
theory the S-matrix equivalent of the sub-luminality requirement.
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