164 research outputs found

    The Function of Bachelardian Epistemology in the Post-colonial Project of Mohammed ‘Abed al-Jabri

    Get PDF
    This paper explores the function of historical epistemology in the thought of Gaston Bachelard (1884–1962) and Mohammed ‘Abed al-Jabri (1935–2010). Attributing thought with a particular function challenges our tendency to explain the development of thought in other socio-historical contexts in terms of mere conceptual influence. Available English-language literature on al-Jabri commonly references Bachelard’s concept of epistemological rupture as a source of inspiration. Though the reference is astute, this term remains poorly understood and has long been overshadowed by Thomas Kuhn’s notion of ‘paradigm shift’. The broader function of Bachelard’s thought as a renegotiation of time, place, subject, and reason in the natural sciences has been largely neglected in historiographies of the philosophy of science outside of France. This paper emphasizes the level of insight and ingenuity with which al-Jabri employs the function of Bachelard’s epistemology by re-interpreting it within the framework of his own socio-historical context. Far from reducing al-Jabri’s thought to a mere programmatic reproduction of French thought, I suggest that al-Jabri was among the most astute interpreters of this long-misunderstood theorist

    Response of cauliflower (Brassica oleracea L.) to nitric oxide application under cadmium stress

    Get PDF
    Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland’s solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.The authors highly acknowledge the Government College University, Faisalabad, Pakistan for their financial support to complete this project. This work was supported by the National Natural Science Foundation of China (No. 51974313) and the Key Project of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization (2020ZDZZ03). This work was supported by the Qatar University vegetable factory project QUEX-CASMJF-VF-18-19. Open Access funding provided by the Qatar National Library

    Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes

    Get PDF
    Twin-ribozyme introns contain a branching ribozyme (GIR1) followed by a homing endonuclease (HE) encoding sequence embedded in a peripheral domain of a group I splicing ribozyme (GIR2). GIR1 catalyses the formation of a lariat with 3 nt in the loop, which caps the HE mRNA. GIR1 is structurally related to group I ribozymes raising the question about how two closely related ribozymes can carry out very different reactions. Modelling of GIR1 based on new biochemical and mutational data shows an extended substrate domain containing a GoU pair distinct from the nucleophilic residue that dock onto a catalytic core showing a different topology from that of group I ribozymes. The differences include a core J8/7 region that has been reduced and is complemented by residues from the pre-lariat fold. These findings provide the basis for an evolutionary mechanism that accounts for the change from group I splicing ribozyme to the branching GIR1 architecture. Such an evolutionary mechanism can be applied to other large RNAs such as the ribonuclease P

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX

    Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles

    Get PDF
    This paper presents the strength and durability of cement mortars using 0–100% ferronickel slag (FNS) as replacement of natural sand and 30% fly ash or ground granulated blast furnace slag (GGBFS) as cement replacement. The maximum mortar compressive strength was achieved with 50% sand replacement by FNS. Durability was evaluated by the changes in compressive strength and mass of mortar specimens after 28 cycles of alternate wetting at 23 °C and drying at 110 °C. Strength loss increased by the increase of FNS content with marginal increases in the mass loss. Though a maximum strength loss of up to 26% was observed, the values were only 3–9% for 25–100% FNS contents in the mixtures containing 30% fly ash. The XRD data showed that the pozzolanic reaction of fly ash helped to reduce the strength loss caused by wet–dry cycles. Overall, the volume of permeable voids (VPV) and performance in wet–dry cycles for 50% FNS and 30% fly ash were better than those for 100% OPC and natural sand

    Extracellular Transglutaminase 2 Is Catalytically Inactive, but Is Transiently Activated upon Tissue Injury

    Get PDF
    Transglutaminase 2 (TG2) is a multifunctional mammalian protein with transamidase and signaling properties. Using selective TG2 inhibitors and tagged nucleophilic amine substrates, we show that the majority of extracellular TG2 is inactive under normal physiological conditions in cell culture and in vivo. However, abundant TG2 activity was detected around the wound in a standard cultured fibroblast scratch assay. To demonstrate wounding-induced activation of TG2 in vivo, the toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly(I:C)), was injected in mice to trigger small intestinal injury. Although no TG2 activity was detected in vehicle-treated mice, acute poly(I:C) injury resulted in rapid TG2 activation in the small intestinal mucosa. Our findings provide a new basis for understanding the role of TG2 in physiology and disease

    Gut Microbiota, Probiotics and Diabetes

    Get PDF
    Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes

    Transglutaminase 6: a protein associated with central nervous system development and motor function.

    Get PDF
    Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons
    corecore