309 research outputs found

    Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells

    Get PDF
    Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications

    Pre-Procedural Atorvastatin Mobilizes Endothelial Progenitor Cells: Clues to the Salutary Effects of Statins on Healing of Stented Human Arteries

    Get PDF
    OBJECTIVES: Recent clinical trials suggest an LDL-independent superiority of intensive statin therapy in reducing target vessel revascularization and peri-procedural myocardial infarctions in patients who undergo percutaneous coronary interventions (PCI). While animal studies demonstrate that statins mobilize endothelial progenitor cells (EPCs) which can enhance arterial repair and attenuate neointimal formation, the precise explanation for the clinical PCI benefits of high dose statin therapy remain elusive. Thus we serially assessed patients undergoing PCI to test the hypothesis that high dose Atorvastatin therapy initiated prior to PCI mobilizes EPCs that may be capable of enhancing arterial repair. METHODS AND RESULTS: Statin naïve male patients undergoing angiography for stent placement were randomized to standard therapy without Atorvastatin (n = 10) or treatment with Atorvastatin 80 mg (n = 10) beginning three days prior to stent implantation. EPCs were defined by flow cytometry (e.g., surface marker profile of CD45dim/34+/133+/117+). As well, we also enumerated cultured angiogenic cells (CACs) by standard in vitro culture assay. While EPC levels did not fluctuate over time for the patients free of Atorvastatin, there was a 3.5-fold increase in EPC levels with high dose Atorvastatin beginning within 3 days of the first dose (and immediately pre-PCI) which persisted at 4 and 24 hours post-PCI (p<0.05). There was a similar rise in CAC levels as assessed by in vitro culture. CACs cultured in the presence of Atorvastatin failed to show augmented survival or VEGF secretion but displayed a 2-fold increase in adhesion to stent struts (p<0.05). CONCLUSIONS: High dose Atorvastatin therapy pre-PCI improves EPC number and CAC number and function in humans which may in part explain the benefit in clinical outcomes seen in patients undergoing coronary interventions

    Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs

    Get PDF
    In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like (CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet, suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.Funding provided by Fundacao para a Ciencia e a Tecnologia project Skingineering (PTDC/SAU-OSM/099422/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    TGF-β Is Required for Vascular Barrier Function, Endothelial Survival and Homeostasis of the Adult Microvasculature

    Get PDF
    Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-β signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-β signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-β signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-β signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-β signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-β signaling. These results implicate constitutive TGF-β signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-β signaling in vasoproliferative and vascular degenerative retinal diseases

    The basidiomycetous yeast Trichosporon may cause severe lung exacerbation in cystic fibrosis patients - clinical analysis of Trichosporon positive patients in a Munich cohort

    Get PDF
    Background: The relevance of Trichosporon species for cystic fibrosis (CF) patients has not yet been extensively investigated. Methods: The clinical course of CF patients with Trichosporon spp. in their respiratory secretions was analysed between 2003 and 2010 in the Munich CF center. All respiratory samples of 360 CF patients (0 - 52.4 years; mean FEV1 2010 81.4% pred) were investigated. Results: In 8 patients (2.2%, 3 male, mean age 21.8 years) Trichosporon was detected at least once. One patient carried T. asahii. One patient carried T. mycotoxinivorans and one patient T. inkin as determined by DNA sequencing. As potential risk factors for Trichosporon colonization steroid treatment, allergic bronchopulmonary aspergillosis (ABPA) and CF associated diabetes were identified in 6, 5, and 2 patients respectively. For one patient, the observation period was not long enough to determine the clinical course. One patient had only a single positive specimen and exhibited a stable clinical course determined by change in forced expiratory volume in one second (FEV1), body-mass-index (BMI), C-reactive protein (CRP) and immunoglobulin G (IgG). Of 6 patients with repeatedly positive specimen (mean detection period 4.5 years), 4 patients had a greater decline in FEV1 than expected, 2 of these a decline in BMI and 1 an increase in IgG above the reference range. 2 patients received antimycotic treatment: one patient with a tormenting dry cough subjectively improved under Amphotericin B inhalation; one patient with a severe exacerbation due to T. inkin was treated with i.v. Amphotericin B, oral Voriconazole and Posaconazole which stabilized the clinical condition. Conclusions: This study demonstrates the potential association of Trichosporon spp. with severe exacerbations in CF patients

    Plant ionomics: from elemental profiling to environmental adaptation

    Get PDF
    Ionomics is a high-throughput elemental profiling approach to study the molecular mechanistic basis underlying mineral nutrient and trace element composition (also known as the ionome) of living organisms. Since the concept of ionomics was first introduced more than 10 years ago, significant progress has been made in the identification of genes and gene networks that control the ionome. In this update, we summarize the progress made in using the ionomics approach over the last decade, including the identification of genes by forward genetics and the study of natural ionomic variation. We further discuss the potential application of ionomics to the investigation of the ecological functions of ionomic alleles in adaptation to the environment

    Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium.</p> <p>Methods</p> <p>Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function.</p> <p>Results</p> <p>Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas <it>in vitro </it>and <it>in vivo</it>, and in areas of intratumor blood vessels and in micrometastatic foci.</p> <p>Conclusion</p> <p>Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.</p

    School Smoking Policy Characteristics and Individual Perceptions of the School Tobacco Context: Are They Linked to Students’ Smoking Status?

    Get PDF
    The purpose of this study was to explore individual- and school-level policy characteristics on student smoking behavior using an ecological perspective. Participants were 24,213 (51% female) Grade 10–11 students from 81 schools in five Canadian provinces. Data were collected using student self-report surveys, written policies collected from schools, interviews with school administrators, and school property observations to assess multiple dimensions of the school tobacco policy. The multi-level modeling results revealed that the school a student attended was associated with his/her smoking behavior. Individual-level variables that were associated with student smoking included lower school connectedness, a greater number of family and friends who smoked, higher perceptions of student smoking prevalence, lower perceptions of student smoking frequency, and stronger perceptions of the school tobacco context. School-level variables associated with student smoking included weaker policy intention indicating prohibition and assistance to overcome tobacco addiction, weaker policy implementation involving strategies for enforcement, and a higher number of students smoking on school property. These findings suggest that the school environment is important to tobacco control strategies, and that various policy dimensions have unique relationships to student smoking. School tobacco policies should be part of a comprehensive approach to adolescent tobacco use

    Correlations of differentially expressed gap junction connexins cx26, cx30, cx32, cx43 and cx46 with breast cancer progression and prognosis.

    Get PDF
    BACKGROUND AND AIMS: Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers. MATERIALS AND METHODS: Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models. RESULTS: The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively. CONCLUSION: Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers

    Beyond forcing scenarios: predicting climate change through response operators in a coupled general circulation model

    Get PDF
    Global Climate Models are key tools for predicting the future response of the climate system to a variety of natural and anthropogenic forcings. Here we show how to use statistical mechanics to construct operators able to flexibly predict climate change for a variety of climatic variables of interest. We perform our study on a fully coupled model - MPI-ESM v.1.2 - and for the first time we prove the effectiveness of response theory in predicting future climate response to CO2 increase on a vast range of temporal scales, from inter-annual to centennial, and for very diverse climatic quantities. We investigate within a unified perspective the transient climate response and the equilibrium climate sensitivity and assess the role of fast and slow processes. The prediction of the ocean heat uptake highlights the very slow relaxation to a newly established steady state. The change in the Atlantic Meridional Overturning Circulation (AMOC) and of the Antarctic Circumpolar Current (ACC) is accurately predicted. The AMOC strength is initially reduced and then undergoes a slow and only partial recovery. The ACC strength initially increases as a result of changes in the wind stress, then undergoes a slowdown, followed by a recovery leading to a overshoot with respect to the initial value. Finally, we are able to predict accurately the temperature change in the Northern Atlantic
    corecore