72 research outputs found

    Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem

    Get PDF
    Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPP). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree–grass ecosystem, we established three landscape-level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green-up and dry-down), slopes during green-up and dry-down period, and seasonal amplitude, were extracted from time series of GPP and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPP was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green-up period. Yet, both fertilized sites senesced earlier during the dry-down period (17–19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPP during the green-up period and a sharper decline in GPP during the dry-down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient–water interaction in such water-limited ecosystems. With the projected warming-drying trend, the positive effects of N fertilization induced by N deposition on GPP may be counteracted by an earlier and faster dry-down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water-limited ecosystems.The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max-Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully acknowledge financial support from the China Scholarship Council. Gerardo Moreno acknowledges financial support from the grant agreement IB16185 of the Regional Government of Extremadura

    Modelling Co-Creation Ecosystem for Public Open Spaces

    Get PDF
    Co-creation can be defined as the involvement of citizens in the initiation and/or the design process of public services in order to (co)create beneficial outcomes and value for society. Mediated public open spaces are ideal environments for co-creation to emerge due to the involvement of the community and ICT in the knowledge creation. The aims of the research presented in the chapter are two-fold: to conduct a mapping activity in order to collect the insights on civic technologies promoting the creation of open public spaces through the use of ICT and to define the critical dimensions in designing cocreative ecosystems. The mapping strategy was conducted by evaluating the civic technologies in Lithuania and Bulgaria. The insights from the empirical exercise allow to draw managerial and organizational recommendations for strengthening the collective efforts of citizens, IT developers, public and governmental institutions in creating open, inclusive and reflective open public spaces

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes

    The three major axes of terrestrial ecosystem function.

    Full text link
    The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8

    Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes

    Get PDF
    13 Pág. Departamento de Medio Ambiente y Agronomía​ (INIA)Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low temporal variability in the greenness signal. With canopy greenness computed from digital repeat photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in leaf age and traits as well as variation of trees’ water fluxes (characterized by sap flow and canopy conductance). The results showed that sprouting leaves are mainly responsible for the rapid increase in canopy green chromatic coordinate (GCC) in spring. We found statistically significantly differences in leaf traits and spectral properties among leaves of different leaf ages. Specifically, mean GCC of young leaves was 0.385 ± 0.010 (mean ± SD), while for mature and old leaves was 0.369 ± 0.003, and 0.376 ± 0.004, respectively. Thus, the temporal dynamics of canopy GCC can be explained by changes in leaf spectral properties and leaf age. Sap flow and canopy conductance are both well explained by a combination of environmental drivers and greenness (96% and 87% of the variance explained, respectively). In particular, air temperature and vapor pressure deficit (VPD) explained most of sap flow and canopy conductance variance, respectively. Besides, GCC is an important explanatory variable for variation of canopy conductance may because GCC can represent the leaf ontogeny information. We conclude that PhenoCam GCC can be used to identify the leaf flushing for evergreen broadleaved trees, which carries important information about leaf ontogeny and traits. Thus, it can be helpful for better estimating canopy conductance which constraints water fluxes.The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully acknowledge the financial support from the China Scholarship Council. ADR acknowledges support for the PhenoCam network from the National Science Foundation ( DEB- 1702697 ). Javier Pacheco-Labrador and Mirco Migliavacca acknowledge the German Aerospace Center (DLR) project OBEF-Accross2 “The Potential of Earth Observations to Capture Patterns of Biodiversity” (Contract No. 50EE1912). The research also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721995 and Ministerio de Economíay Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    • …
    corecore