2,046 research outputs found

    Study of ARPES data and d-wave superconductivity using electronic models in two dimensions

    Full text link
    We review the results of an extensive investigation of photoemission spectral weight using electronic models for the high-Tc superconductors. Here we show that some recently reported unusual features of the cuprates namely the presence of (i) flat bands, (ii) small quasiparticle bandwidths, and (iii) antiferromagnetically induced weight, have all a natural explanation within the context of holes moving in the presence of robust antiferromagnetic correlations. Introducing interactions among the hole carriers, a model is constructed which has dx2−y2{\rm d_{x^2 - y^2}} superconductivity, an optimal doping of ∼15%\sim 15\% (caused by the presence of a large density of states at the top of the valence band), and a critical temperature ∼100K\sim 100K.Comment: 11 pages Z-compressed postscript, to appear in the Proceedings to the Stanford Conference on Spectroscopies in Novel superconductor

    The hidden face of wine polyphenol polymerization highlighted by high resolution mass spectrometry

    Get PDF
    Polyphenols, including tannins and red anthocyanin pigments, are responsible for the color, taste, and beneficial health properties of plant-derived foods and beverages, especially in red wines. Known compounds represent only the emerged part of the "wine polyphenol iceberg". It is believed that the immersed part results from complex cascades of reactions involving grape polyphenols and yeast metabolites. We used a nontargeted strategy based on high-resolution mass spectrometry and Kendrick mass defect plots to explore this hypothesis. Reactions of acetaldehyde, epicatechin, and malvidin-3-O-glucoside, representing yeast metabolites, tannins, and anthocyanins, respectively, were selected for a proof-of-concept experiment. A series of compounds including expected and so-farunknown structures were detected. Random polymerization involving both the original substrates and intermediate products resulting from cascade reactions was demonstrated

    Forging Fluorine-Containing Quaternary Stereocenters by a Light-Driven Organocatalytic Aldol Desymmetrization Process

    Get PDF
    Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substi- tuted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon–fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly function- alized chiral 2-fluoro-3-hydroxycyclopentanones

    Hole Doping Evolution of the Quasiparticle Band in Models of Strongly Correlated Electrons for the High-T_c Cuprates

    Full text link
    Quantum Monte Carlo (QMC) and Maximum Entropy (ME) techniques are used to study the spectral function A(p,ω)A({\bf p},\omega) of the one band Hubbard model in strong coupling including a next-nearest-neighbor electronic hopping with amplitude t′/t=−0.35t'/t= -0.35. These values of parameters are chosen to improve the comparison of the Hubbard model with angle-resolved photoemission (ARPES) data for Sr2CuO2Cl2Sr_2 Cu O_2 Cl_2. A narrow quasiparticle (q.p.) band is observed in the QMC analysis at the temperature of the simulation T=t/3T=t/3, both at and away from half-filling. Such a narrow band produces a large accumulation of weight in the density of states at the top of the valence band. As the electronic density decreases further away from half-filling, the chemical potential travels through this energy window with a large number of states, and by ∼0.70 \sim 0.70 it has crossed it entirely. The region near momentum (0,π)(0,\pi) and (π,0)(\pi,0) in the spectral function is more sensitive to doping than momenta along the diagonal from (0,0)(0,0) to (π,π)(\pi,\pi). The evolution with hole density of the quasiparticle dispersion contains some of the features observed in recent ARPES data in the underdoped regime. For sufficiently large hole densities the ``flat'' bands at (π,0)(\pi,0) cross the Fermi energy, a prediction that could be tested with ARPES techniques applied to overdoped cuprates. The population of the q.p. band introduces a {\it hidden} density in the system which produces interesting consequences when the quasiparticles are assumed to interact through antiferromagnetic fluctuations and studied with the BCS gap equation formalism. In particular, a region of extended s-wave is found to compete with d-wave in the overdoped regime, i.e. when the chemical potential has almost entirely crossed the q.p.Comment: 14 pages, Revtex, with 13 embedded ps figures, submitted to Phys. Rev. B., minor modifications in the text and in figures 1b, 2b, 3b, 4b, and 6

    Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX).</p> <p>Results</p> <p>We examined <it>in vivo </it>LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA<sub>1 </sub>receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA<sub>3</sub>, but not LPA<sub>1 </sub>or LPA<sub>2 </sub>receptors. Similar time-related and LPA<sub>3 </sub>receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an <it>in vitro </it>study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA<sub>3 </sub>receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA<sub>1 </sub>or LPA<sub>3 </sub>receptors.</p> <p>Conclusion</p> <p>These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.</p

    Bi-layer splitting in overdoped high TcT_{c} cuprates

    Full text link
    Recent angle-resolved photoemission data for overdoped Bi2212 are explained. Of the peak-dip-hump structure, the peak corresponds the q⃗=0\vec q =0 component of a hole condensate which appears at TcT_c. The fluctuating part of this same condensate produces the hump. The bilayer splitting is large enough to produce a bonding hole and an electron antibonding quasiparticle Fermi surface. Smaller bilayer splittings observed in some experiments reflect the interaction of the peak structure with quasiparticle states near, but not at, the Fermi surface.Comment: 4 pages with 2 figures - published versio

    AT-101 ( R -(−)-gossypol acetic acid) enhances the effectiveness of androgen deprivation therapy in the VCaP prostate cancer model

    Full text link
    Prostate cancer remains a leading cause of cancer death in American men. Androgen deprivation therapy (ADT) is the most common treatment for advanced prostate cancer patients; however, ADT fails in nearly all cases resulting in castration resistant or androgen-insensitive (AI) disease. In many cases, this progression results from dysregulation of the pro-survival Bcl-2 family proteins. Inhibition of pro-survival Bcl-2 family proteins, therefore, may be an effective strategy to delay the onset of AI disease. Gossypol, a small molecule inhibitor of pro-survival Bcl-2 family proteins, has been demonstrated to inhibit AI prostate cancer growth. The apoptotic effect of gossypol, however, has been demonstrated to be attenuated by the presence of androgen in a prostate cancer xenograft mouse model (Vertebral Cancer of Prostate [VCaP]) treated with AT-101 ( R -(−)-gossypol acetic acid). This study was undertaken to better understand the in vitro effects of androgen receptor (AR) on AT-101-induced apoptosis. VCaP cells treated with AT-101 demonstrated an increase in apoptosis and downregulation of Bcl-2 pro-survival proteins. Upon AR activation in combination with AT-101 treatment, apoptosis is reduced, cell survival increases, and caspase activation is attenuated. Akt and X inhibitor of apoptosis (XIAP) are downregulated in the presence of AT-101, and AR stimulation rescues protein expression. Combination treatment of bicalutamide and AT-101 increases apoptosis by reducing the expression of these pro-survival proteins. These data suggest that combination therapy of AT-101 and ADT may further delay the onset of AI disease, resulting in prolonged progression-free survival of prostate cancer patients. J. Cell. Biochem. 110: 1187–1194, 2010. Published 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77515/1/22633_ftp.pd
    • …
    corecore