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Abstract: 

This paper is concerned with the performance and design of a novel ductile structural steel 

shearhead for connecting reinforced concrete flat slabs to tubular steel columns. In the 

suggested system, a gap is left around the column to enable the slab to be connected to the 

column through isolated structural steel members which are designed to yield in shear before 

punching failure occurs. The proposed connection could serve as a primary lateral resisting 

system in regions of moderate seismicity or as a secondary system in areas of significant 

seismicity. The paper describes a series of large scale slab tests, as well as complementary 

component tests, which were carried out to develop the proposed shearhead system. The 

detail is shown to offer enhanced ductility and energy dissipation compared with traditional 

forms. Experimental and numerical results are used to demonstrate the favourable inelastic 

performance of the connection under combined gravity and cyclic lateral loading. Finally, 

recommendations suitable for inclusion in design guidance are presented and discussed for 

the proposed shearhead detail. 
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1. INTRODUCTION 

This paper deals with the design of shearhead systems for connecting reinforced 

concrete flat slabs to tubular steel columns. ACI 318 [1] gives design guidance for ‘fully-

integrated’ ACI type shearheads, which is based on the work of Corley and Hawkins [2].  

Various proprietary shearhead systems such as the Geilinger mushroom [3] are commercially 

available for static gravity loading but there is relatively little published research on the 

generic behaviour of shearhead systems [4-6]. Conventional shearhead systems, such as the 

ACI-type [1], are “fully integrated” in the sense that the shearhead is entirely cast into the 

slab. Recent research [4,6] into fully integrated shearheads has focused on increasing shear 

capacity under static gravity loading through improved composite action achieved by means 

of shear studs and anchor plates. These systems typically have high punching capacities but 

low ductility since failure is through punching in the concrete.  

This paper describes the final stages in the development of the proposed shearhead 

(see Figs 1 and 2), which is intended for use in areas of significant seismicity unlike the 

Geilinger system [3]. The system proposed in this paper (see Figs 1 and 2) is “partially 

integrated” in the sense that a gap is left around the column to enable the slab to be connected 

to the column through isolated structural steel members. The detail avoids the uncertainties 

associated with punching failure by ensuring that the strength of the shearhead system is 

limited by the isolated structural steel members yielding in shear rather than punching in the 

slab. Yielding of the steel members in shear is desirable under seismic loading, since it results 

in high ductility, robust resistance to degradation under cyclic loading, high initial stiffness 

and significant energy dissipation. This reduces the plastic deformation demand elsewhere in 

the structure [7,8] and helps to protect the structure from severe structural damage during 

seismic events.  
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The structural form developed incrementally over the course of the research [9-10] 

during which time three types of shearhead were tested. The initial tests were carried out on a 

pair of hybrid flat slab specimens with fully embedded ACI type shearheads [9-10] which 

were tested to failure under i) gravity and ii) combined gravity and cyclic lateral loading. 

These specimens were similar to the specimen shown in Figs 1 and 2 but without the gap or 

collar around the column shown in Fig 2. They failed in punching shear and exhibited 

relatively little ductility under cyclic lateral loading [10]. The design was subsequently 

modified by leaving a gap around the column (see Fig 1) to enable the exposed length of the 

shear arms to yield prior to punching failure in the concrete [10]. Initially, the edge around 

the gap was not reinforced with the collar shown in Fig 2. The tests with this arrangement 

[10] demonstrated the validity of the gap concept but the performance was impaired by 

localised concrete failure around the edge of the gap. Therefore, the small scale component 

tests described in Section 2 were carried out to optimise the connection detail between the 

shearhead and slab. The results of the component tests were used in conjunction with 

nonlinear finite element analysis (NLFEA) to develop the shearhead shown in Figs 1 and 2.  

The resulting shearhead has similarities with the well known Geilinger mushroom system [3] 

but differs in two fundamental respects which enhance its response under seismic loading. 

First, the shear arms of the suggested system are designed to yield in shear prior to the 

concrete failing in punching. Second, the shear arms are extended into the slab to provide 

axial and rotational restraint to the dissipative zone or “fuse” in the gap. The rotational 

restraint is beneficial since it halves the characteristic length at which the failure mode of the 

fuse changes from flexure to shear. The axial restraint allows tensile membrane forces to 

develop in the shear arms at large displacements, which increases the shear resistance as 

discussed in Section 5.2. The large scale tests showed that the novel configuration offers 

significantly more ductility than conventional details in conjunction with stable hysteretic 
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behaviour. The tests also showed that the strength of the shearhead system was governed by 

yielding of the isolated steel members within the gap, which act as dissipative zones or 

‘fuses’,  rather than by punching in the slab. 

 

2. TESTING OF SLAB PANEL COMPONENTS 

This section describes nine panel tests which were carried out to investigate the 

effectiveness of various shear arm details under cyclic loading. The slab panel (SP) tests 

provide valuable information on the performance of the shearhead system in large scale tests, 

including the effects of local concrete failure and low cycle fatigue. Three specimens (SPT1-

1to SPT1-3) were tested under cyclic loading in the first series of panel tests. These 

specimens were designed to investigate the relative performance of shear arms with open as 

well as tubular-shaped cross-sections. Test SPT1-3 investigated the effectiveness of casting 

the edge of the slab into a steel channel to prevent localised shear failure. A further six 

specimens (SPT2-1 to SPT2-6) were tested in the second series of panel tests which focussed 

on refining the most promising detail from the first series of tests. 

2.1 Test rig 

The specimen, consisting of a steel shear arm partially embedded in a slab panel, was 

held within a steel frame which was stressed to the strong floor. The slab was simply 

supported along its shorter edges between the flanges of channel sections. Pairs of steel 

wedges were used to secure the specimen between the flanges during cyclic loading. The 

specimen was connected to a 25 ton actuator via a double hinge which was clamped to the 

exposed end of the shear arm with a bolted connection (see Fig.1). The load was applied at an 
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eccentricity of 85mm from the slab edge to the centre line of the ram to make shear action 

dominant in the shear arms. 

2.2 Specimens and instrumentation 

The size, shape and reinforcement detailing of the slab panels was chosen to be 

representative of the local conditions around the gap in the large scale slabs. The slab panels 

measured 900×600mm on plan with a thickness of 155mm. Fig. 3 shows the basic 

reinforcement layout used in all the tests which consisted of T12 bars at 100mm centres in the 

top layer and T12 bars at 200mm centres in the bottom layer.  The shear arms were centrally 

positioned in the slab between the top and bottom reinforcement layers. Tables 1 and 2 give 

full details of the tested specimens in Series 1 and 2 respectively. The steel properties are 

given in Table 3. The mean concrete cube strength was 44 MPa in both series of slab panel 

tests.  

The first series of tests compared the performance of shear arms with tubular and I 

shaped cross sections with the same cross-sectional properties. The tests were designed to 

examine local shear failure in the concrete. Therefore, the strength of the shear arms was 

chosen to ensure that failure occurred within the concrete prior to yielding of the shear arms. 

The tubular sections were 60×100×6.3 rectangular hollow sections (RHS) which were bent 

about their minor axis. The I-sections were fabricated from a single 60×100×6.3 RHS, by 

cutting the section in half and welding the two halves back to back. The embedded length of 

the shear arms in Series-1 was 250mm. The edge of the slab of specimen SPT1-3 was 

reinforced with a 500mm long PFC-150×90×24 channel section (see Fig. 5a for section 

dimensions).  

The strength of the shear arms was reduced in the second set of tests (see Table 2) to 

ensure that the shear arms yielded prior to punching failure in the concrete. The shear arms 
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were all I sections made from pairs of RSC-51×38 hot rolled steel channel (RSC) sections 

welded back-to-back (see Fig. 5a for section dimensions). Six different connection details 

were investigated to determine an effective means of reinforcing the slab edge. In all cases, 

the slab edge was reinforced with a steel channel section to minimise damage to the concrete 

at the intersection with the shear arm. The tests investigated the necessity of tying the channel 

section to the slab edge with embedded reinforcement as well as the effect of varying i) the 

wall thickness of the channel section and  ii) the length and end anchorage detail of the 

embedded shear arm. The aim was to determine the least onerous of these methods of 

reinforcing the slab edge to prevent localised damage to the concrete. 

The front edge of specimens SPT2-1 to SPT2-4 and SPT2-6 were reinforced with a 

500 mm length of PFC-150×90×24 channel section as shown in Fig. 3b. The edge of the 

remaining specimen SPT2-5 was reinforced with a cold formed C-150×90×5 channel section 

with a constant wall thickness of 5 mm. In tests SPT2-1 and SPT2-3 to SPT2-5, the channel 

section was connected to the slab edge by welding a pair of 500mm long T16 U-bars to the 

channel web to either side of the shear arm. In tests SPT2-3 and SPT2-6, a 150mm long 

section of RSC-51×38 was welded to the end of the embedded shear arm for anchorage as 

shown in Fig. 6. Three 8 mm diameter stirrups were placed between the ends of the channel 

section and the adjacent supports as shown in Fig. 4 to strengthen the slab edge in shear. 

The applied load was measured with a load cell placed between the actuator ram and 

the hinge. Strains were measured in the exposed parts of the shear arms with electrical 

resistance strain gauges. Axial strains were measured in the top and bottom flanges 15 mm 

from the slab edge. Shear strains were measured in the web with two rosettes of strain gauges 

positioned directly opposite each other. Inclinometers were used to measure the rotation at 

the end of the shear arm and the rotation of the channel edge reinforcement.   



7 
 

2.3 Results of Series 1 

The cyclic loading regime followed the ECCS recommendations [11]. The load was 

applied in displacement control with a constant loading rate of 5 mm/min. The displacement 

amplitude was increased from 0.9 mm in the first cycle to a maximum of 28 mm unless 

failure occurred before. The hysteretic response (see Fig. 7a to c) showed extensive 

degradation and pinching effects from early on. The specimens without edge channels (SPT1-

1 and SPT1-2) failed in punching in the 5th load cycle (7mm amplitude). The box section 

(SPT1-1) resisted a peak load of 40 kN compared with 70 kN for the I section (SPT1-2). 

Shear cracks propagated from the edges of the box section to the nearest concrete surface in 

Test SPT1-1, but from the tips of the flanges to the furthest concrete surface in Test SPT1-2 

with the I section. The shear cracks were oriented at between 30 and 40o to the horizontal. 

The higher strength of SPT1-2 is explained by the relatively deeper punching cone observed 

in test SPT1-2 compared with SPT1-1 (see Fig. 5c). Specimen SPT1-3 with channel edge 

reinforcement resisted a peak load of around 135kN. The pre-peak performance was 

governed by transverse beam action which was limited by the shear strength of the slab edge 

between the ends of the channel reinforcement and the supports. Diagonal shear cracks 

formed in the unreinforced part of the slab edge as shown in Fig. 8 for specimen SPT2-3 

which was typical. The cracks widened significantly with increasing displacement. The shear 

resistance of the unreinforced slab edge reduced significantly in the post-peak regime during 

which the load was increasingly transferred into the slab through mechanical interlock 

between the channel and the slab edge.  

2.4 Results of Series 2 

Table 4 and Figs. 9a to f summarise the performance of the specimens in Series-2. 

Comparison of the peak loads for SPT2-1, SPT2-4 and SPT2-6 in Table 4 shows that the 

peak load and ductility were significantly increased by the addition of the welded U-bars. 
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Comparison of the performances of SPT2-4 (with welded U bars and a 250 mm long shear 

arm) and SPT2-2 (with a 340 mm long shear arm) shows that increasing the embedment 

length alone was not as effective as using U-bars to anchor the channel to the slab edge. The 

U-bars were effective since they prevented the channel from separating from the slab edge 

thereby minimising damage to the slab edge. The flanges of the thinner channel used in 

SPT2-5 were less effective at controlling the deterioration of the slab edge at the intersection 

with the shear arm than the thicker channel used in the other tests. Fig. 9 also shows that 

specimen SPT-3 with welded U bars and end anchorage performed most favourably.  

2.5 Comparative assessment 

As observed in the tests and discussed above, the cyclic behaviour of the shear arm 

details without channel edge reinforcement is unsuitable for dissipative seismic design due to 

local concrete degradation and pinching effects. Tubular sections were also found to be less 

effective for shear arms than I sections due to the reduced depth of the shear cone punched 

out of the concrete at failure (see Fig 4c). Specimen SPT1-3, with edge reinforcement, 

behaved more favourably than SPT1-1 and SPT1-2, without edge reinforcement, since the 

channel distributed the load into the slab edge and restrained its expansion due to cracking. 

Furthermore, the edge channel provided an alternative path for transferring shear force into 

the slab. The behaviour was further improved when i) welded U bars were used to connect 

the edge channel to the slab and ii) an anchor plate was welded to the end of the shear arm. 

Both measures increased shear resistance by controlling the width of the through-thickness 

crack that developed at the tips of the flanges of the channel reinforcing the slab edge. The 

SPT2-3 detail behaved most favourably out of all the investigated details. This can be seen by 

comparing Figs. 5b and 7c which show the hysteretic responses of shear arm SPT1-2 without 

channel edge reinforcement and SPT2-3 with channel edge reinforcement, respectively. The 

shear resistance of SPT2-3 was 2.8 times greater than that of SPT1-2 and the displacement at 



9 
 

the peak load was three times greater in test SPT2-3 than SPT1-2. The slab panel tests 

showed that detail SPT2-3 was most suitable for use in the large scale slab tests.   

 

3. TESTING OF LARGE SCALE SLAB-TO-COLUMN-ASSEMBLAGES 

The objective of the experimental study was to compare the performance of the 

proposed partially embedded shearhead with that of the comparable ACI type shearheads 

tested previously by the authors under gravity [9] and combined gravity and cyclic lateral 

loading [10]. Two large scale specimens were tested in this programme to determine the load-

displacement response of the partially embedded shearhead under firstly, pure gravity, and 

secondly, combined gravity and cyclic lateral loading. Each slab was connected to a tubular 

steel column with a shearhead based on the SPT2-3 detail. The failure loads of the specimens 

are summarised in Table 6. 

3.1 Test rig 

A purpose-built test rig was used to test slabs under uni-directional lateral cyclic 

loading conditions with co-existing gravity loads. As illustrated in Fig. 8, the test rig consists 

of the following main parts: 

- A 25t reaction frame connected to the strong floor via 9 prestressed bolts 

- A 25t horizontal actuator (±125mm stroke) connected to the reaction frame and the 

top of the column stub via clevises. 

- Eight symmetrically arranged pin ended vertical restraints which connect the slab 

edges to the strong floor. 

- A 100t vertical hydraulic jack connected to the bottom of the column stub, sharing the 

same hinge with the 'tie member' restraining the base of the column. 
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- The test specimen which is connected to the upper and lower tubular steel column 

stubs via bolted head plates. 

The lateral displacement can be applied either monotonically or cyclically. The 

horizontal actuator was used in displacement control in all the tests, whereas the vertical 

actuator was used in load control. Loads were measured with load cells positioned between 

the hydraulic rams and the hinges at the respective column ends. 

3.2 Specimen details 

The interior slab-to-column assemblages were constructed at 60% of full scale. The 

dimensions of the tested slabs were identical to those of the conventional ACI-type 

shearheads tested by the authors previously [9,10]. The slabs measured 2880 mm × 2440 mm 

on plan between the centrelines of the vertical restraints in the “longitudinal” and 

“transverse” directions respectively. The slab depth was 155mm. The column measured 1185 

mm between the midpoints of the hinges at the top and bottom of the stub column. The 

reinforcement layout is shown in Fig. 9. The reinforcement consisted of T12 bars in each 

direction with the top and bottom reinforcement spaced at centres of 100 mm and 200 mm 

respectively, all with a minimum cover of 20 mm. Bundled reinforcement bars were placed 

adjacent to the edges of the hole, to compensate for the bars that were discontinued across the 

width of the opening. Additional U-bent bars were used to trim the edges of the opening as 

well as the slab edges.  

The shearhead assembly consisted of a continuous column fabricated from a square 

hollow section (SHS) of size 180×10mm and shear arms made of RSC-51×38 hot rolled steel 

channel sections welded back-to-back (see Fig. 2). The shear arms were welded to the 

column via 8 mm thick polygonal shaped gusset plates (366×366 mm) fillet-welded to the top 

and bottom of the channel sections. The gusset plates were designed to smoothly transfer 
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forces into the column from the flanges of the shear arms and to prevent yielding of the 

column. The welds of the detail used for cyclic testing were aligned parallel to the axial strain 

direction to minimise the effect of extremely low cycle fatigue (ELCF). A full depth collar 

made from a PFC-150×90×24 section was used to trim the 500×500 mm square opening in 

the slab (see Fig. 2). Each shear arm passed through an opening cut in the web of the collar, 

and was welded to the collar through a 15mm thick stiffener plate. The distance between the 

edge of the gusset plate and the centreline of the web of the collar was 70 mm. Tee shaped 

anchor pieces and welded U-bars (see Fig. 2) were used as in the SPT2-3 detail described 

previously. The shearhead was centrally embedded between the four layers of reinforcement. 

The shear arms are identified with the prefixes “longitudinal” or “transverse”, with the 

longitudinal shear arms oriented parallel to the direction of the imposed lateral displacement.  

The slab was cast from ready-mix concrete with a maximum aggregate size of 

dmax=10mm. The specimens were cured under plastic sheets during the first week after 

casting. Control specimens were cured in air alongside the slabs and in water at 20oC. The 

concrete strengths were measured on the day of testing. The mean concrete cube strength was 

47 MPa and the mean concrete splitting tensile strength was 3.1 MPa. Tensile tests were 

carried out on the reinforcement bars. Longitudinal strains were measured with a clip gauge 

extensometer (gauge length 100mm), and stresses were evaluated for the nominal cross 

section. Four necked coupons were cut from samples of the RSC-51×38 channel sections 

used for the shear arms in the large scale slab tests. Displacements were measured with a 

optical extensometer over a gauge length of 50 mm. Table 3 gives average mechanical 

properties for the reinforcement and shear arms. The structural steel properties were obtained 

according to BS EN 10002-1 [12]. Stress-strain diagrams are given elsewhere [9] for the 

reinforcement and shear arms.  
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3.3 Instrumentation 

Vertical displacements were measured with LVDT's at the centre of the slab and with 

string pot extensometers attached to the collar below the slab. Horizontal displacements of 

the column head were measured directly within the actuator. The horizontal slab 

displacements were measured with LVDT’s located at the front edge of the slab. Strains were 

measured in one longitudinal and one transverse shear arm within the gap using electrical 

resistance strain gauges. Axial strains were measured in the top flanges with gauges 

positioned 15 mm from the edge of the gusset plate and 12 mm from the web of the collar. 

Shear strains were measured with strain gauge rosettes positioned midway along the fuse at 

the centre of the web. Radial and tangential concrete surface strains were measured with a 

Demec mechanical extensometer. 

3.4 Gravity loading test (Specimen LS-1) 

In this test, the gravity load was increased in 30 kN increments to 570 kN, which was 

the maximum safe working load of the test rig. There were no signs of imminent punching 

failure when the test was stopped. Fig. 11 shows the crack pattern at the end of Test LS-1 

while Fig. 12 depicts the gravity load versus central deflection. The figure also shows the 

comparative response with that of the fully integrated ACI type shearhead tested by the 

authors previously [9]. Hair line cracks appeared at the top surface of the slab at the corners 

of the collar at 90 kN and propagated radially. Cracks developed along the edge of the collar 

at 150 kN. Circumferential cracks appeared over the anchors at the end of the shear arms at 

320 kN.  

A Demec gauge was used to measure the radial and circumferential strains in the top 

surface of the slab over the shearhead arms. At 500 kN, the maximum recorded 

circumferential strain was 0.0040 over the longitudinal shear arm at a distance of 140mm 



13 
 

from the collar edge. The corresponding peak radial strain was 0.0038 at the tip of the 

longitudinal shear arm. The cracks closed almost completely when the slab was unloaded, 

indicating that little if any plastic deformation developed within the reinforcement during the 

test.  

The axial strain in the top flanges of the shear arms reached the yield limit of 0.0015 

at around 250 kN when the central displacement was 8 mm. The strain increased gradually as 

the load was increased to 375 kN. Thereafter, the axial strain increased rapidly to 0.033 as the 

load was increased to 570 kN at which load the central displacement was 32 mm. The web 

yielded in shear at around 375 kN when the central displacement was 15 mm. The shear 

strain was 0.025 at the end of the test when the differential displacement between the edge of 

the gusset plate and the collar was 8mm.  

3.5 Lateral cyclic loading test (Specimen LS-2) 

The specimen was initially loaded with a gravity load of 200 kN which was maintained 

throughout the test. The gravity load was chosen to be the same as that adopted in the lateral 

load test of the companion specimen H1 which was reinforced with a fully embedded ACI 

type shearhead. It is also representative of the design gravity load under seismic loading as it 

is around half the load at which the shear arms yielded in shear under gravity loading in test 

LS-1. Subsequently, the specimen was loaded with cyclic lateral displacements which 

followed the ECCS [11] recommendations as shown in Fig. 13. The displacement amplitudes 

in the ECCS loading recommendations are linear functions of the lateral yield displacement 

under monotonic loading. The yield displacement is defined as the displacement at the 

intersection of a line drawn through the origin with slope E0 (where E0 is the initial stiffness) 

and a line with slope E1=E0/10 drawn tangential to the load displacement curve. The yield 

displacement was estimated with NLFEA to be ey=15mm for specimen H1. This 
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displacement was subsequently used to define the amplitude of the lateral loading 

displacements used in all the cyclically loaded tests. The peak lateral displacement was 

limited to 80 mm in cycles 11 to 13 of the test by the actuator stroke length. A constant 

loading rate of 10mm/min was used throughout.  

The crack pattern developed under gravity loading as described in Section 3.4. The 

cracks propagated radially towards the edges of the specimen as the lateral displacement was 

increased. Fig. 14a shows that the lateral load versus displacement response was both ductile 

and stable unlike that of the comparable ACI type shearhead [10] shown in Fig. 14b. Fig. 15 

shows the evolution of axial strain in the top flanges of the longitudinal and transverse shear 

arms adjacent to the gusset plates. Fig. 15 shows that the strains remained just within the 

elastic limit of 0.0015 in the transverse shear arms, whereas extensive yielding occurred in 

the longitudinal arms where failure initiated in the 11th cycle. The fillet welds connecting the 

longitudinal shear arm to the gusset plate visibly fractured in the 13th cycle. The failure of the 

welds caused the load resistance to drop in successive cycles as the fracture in the welds 

extended along the flange edges with the parent material remaining intact. The top gusset 

plate eventually completely separated from the flange. The test was stopped after 15 load 

cycles when the lateral load resistance had deteriorated by 23%. The peak lateral load was Fx 

= 70 kN which induced a bending moment of 83 kNm into the slab. The corresponding peak 

column drift was 6.8%. 

3.6 Comparative assessment of proposed and ACI type shearheads 

Fig. 12 compares the load displacement response in Test LS-1 with that of a fully 

integrated ACI type shearhead previously tested by the authors [9]. The specimens were 

virtually identical apart from the gap around the column in Test LS-1. Fig. 12 shows that 

punching resistance in Test LS-1, which was not reached, exceeded that of the ACI type 
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shearhead tested previously [9] by at least 25%. The authors [10] also tested the ACI type 

shearhead H1 described in [9], under the cyclic lateral loading shown in Fig. 13 acting in 

conjunction with a gravity load of 200 kN. Comparison of Figs. 14a and 14b shows that the 

peak lateral load of 70 kN in Test LS-2 is similar to that of 76 kN for the comparable ACI 

type shearhead H1 [10]. Fig. 14 also shows that the load-displacement response of the 

partially integrated shearhead (LS-2) was far more ductile than that of the comparable ACI 

type shearhead. The partially integrated shearhead dissipated 15.7 kJ of energy which is 

around five times that dissipated by the ACI type shearhead.  The cyclic lateral loading tests 

showed that the behaviour of the partially integrated shearhead was almost entirely governed 

by the response of the isolated shear arms within the gap as intended.  

 

4. NUMERICAL ANALYSES 

4.1 General 

Numerical simulations were carried out to determine the contribution of the shearhead 

to the shear strength of the tested specimens. The analyses investigated the mechanics of load 

transfer within the shearhead. The results of these analyses were used to develop the design 

oriented analytical procedure presented in Section 5. The analysis was carried out using the 

finite element program DIANA v9.3 [13]. Concrete was modelled with 20 noded 

isoparametric brick elements and the structural steel sections with 8 noded isoparametric 

curved shell elements. Reinforcement was modelled with 3 noded 3D cable elements. A full 

3×3×3 integration scheme was adopted for the solid elements within the zone of mesh 

refinement. A 2×2×2 reduced integration scheme was used elsewhere. A 3×3×7 integration 

scheme was used for the shell elements with 7 integration points through the depth of the 

element. The reinforcement was modelled as perfectly elasto-plastic. A tri-linear hardening 
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diagram was used to simulate the measured stress-strain response of the shearhead [9] in the 

gravity load test. On the other hand, bi-linear strain hardening was used to model the cyclic 

hardening which occurred in test LS-2. The hardening was taken as 0.75% up to the ultimate 

strength after which the strength remained constant with increasing strain. Perfect bond was 

assumed between the reinforcement and the embedded structural steel elements. Concrete 

was modelled with a total strain model based on the modified compression field theory of 

Vecchio et al. [14] and its 3-D extension by Selby and Vecchio [15]. The concrete 

compressive behaviour was described with the parabolic hardening and softening relationship 

proposed by Feenstra [16]. In the present analysis, the fracture energy in compression was 

taken Gc=100Gf where Gf denotes the fracture energy in tension, which was calculated in 

accordance with MC90 [17]. A smeared fixed crack model was used in conjunction with the 

Rankine failure criterion. For the concrete tensile behaviour exponential tension softening 

was used. The crack bandwidth h was taken as 3 Vh  (V=volume of the element). A 

constant shear retention factor β was used to model the reduction in shear stiffness after 

cracking. The material parameters adopted in the NLFEA are summarised in Table 5 in 

which the concrete cylinder strength is taken as fc’=0.8fcube in accordance with MC90 [18]. 

The background to the choice of the material parameters is discussed elsewhere [10].  

The load was applied in displacement control for pure gravity loading. On the other 

hand, load control was used for gravity loading and displacement control for lateral loading 

for combined loading. The lateral load was applied monotonically in the analysis of test LS-2 

even though the specimen was cyclically loaded. A quasi (secant method) Newton solution 

procedure was adopted. The iteration was terminated when the energy norm was less than or 

equal to 10-3.  The results of the NLFEA are summarised in Table 6 and discussed below. 
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4.1 Simulation of gravity load test LS-1. 

Fig. 12 compares the measured and predicted load displacement responses for the 

gravity load test LS-1. Results are presented for the actual fuse length of 70mm with 

(baseline analysis) and without geometric nonlinearity. Strain hardening is not included in 

any of the analyses discussed below or Fig. 12 unless noted otherwise as it made very little 

difference to the results due to the long yield plateau of the shear arms. This is illustrated for 

the baseline analysis which is presented in Fig. 12 with and without strain hardening. The 

analyses were terminated when the peak extreme fibre strain in the fuse reached εxx = 0.25 

which is just less than the minimum fracture strain measured in the coupon tests of the parent 

metal which was 0.31. Fig. 12 shows that the baseline analysis agrees well with the measured 

response. Geometric nonlinearity is seen to become significant at around 400 kN when the 

deflections calculated with and without geometric nonlinearity diverge. The slight 

underestimate in the predicted displacements is attributed to the analysis overestimating the 

degree of composite action between the slab and the shearhead.  

The following discussion refers to the baseline analysis with geometric nonlinearity. 

The shearhead first yielded in the top flanges of the longitudinal shear arms, adjacent to the 

collar reinforcing the slab edge, at 180 kN compared with 250 kN in the test. The 

reinforcement first yielded at 315 kN in the transverse bars at the corners of the collar. The 

yielding of these bars had little if any effect on the predicted central displacement. The webs 

of the shear arms yielded in shear at 430 kN, which is the capacity calculated in the first order 

analysis, compared with around 380 kN in the test. Thereafter, the resistance increased 

significantly due to geometric nonlinearity as shown in Fig. 12. 

Fig. 16 shows the plastic axial strain contours εpxx at the peak load superimposed onto 

the shearhead in its deflected shape. The strain contours show concentrations of localised 
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axial strain at the ends of the fuse. Figs. 17, 18 and 19 show the distribution of shear force, 

axial force and bending moment distribution in the shear arms at the elastic limit and at the 

predicted failure load of 615 kN. The axial forces, shear forces and bending moments were 

obtained by integration as follows:  
A

dAN  , 
A

dAV   and  
A

zdAM  where A is the 

cross-sectional area of the shear arm. Fig. 17 shows that the shear force is largely transferred 

into the shear arm at the collar rather than along the embedded length of the arm. Fig. 18 

shows that significant axial forces develop in the shear arms if properly anchored with end 

plates or otherwise. The end plates are likely to have been more effective in the test than 

suggested by Fig. 18 since the shear arms were assumed to be perfectly bonded to the 

concrete in the analysis. Fig. 19 shows that the maximum bending moment in the shear arm 

was 3 kNm which is significantly less than the flange plastic moment capacity of 6.1 kNm 

due to the effect of local flange bending.  

The analysis was repeated with fuse lengths of 45 mm and 90 mm. The analyses were 

stopped when the peak extreme fibre strain in the fuse reached 0.025 as in the analyses of LS-

1. The length of the fuse was varied by changing the diameter of the gusset plate around the 

column. Fig. 12 shows that the increase in resistance due to geometric nonlinearity increased 

as the length of the fuse was reduced. 

 

4.2 Simulation of lateral load test LS-2. 

The first order lateral resistance was calculated to be Fx = 45 kN in test LS-2 which 

corresponds to a bending moment of 53 kNm in the slab. Fig. 20 compares the backbone of 

the hysteretic response with the predicted responses including geometrical nonlinearity. 

Comparison with the backbone, suggests that geometric nonlinearity and strain hardening 
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increased the first order lateral resistance by a factor of 1.6. Furthermore, the lateral 

resistance was significantly underestimated if hardening was neglected. The following 

discussion refers to the baseline analysis with hardening unless stated otherwise. Tensile 

yielding was first predicted to occur at Fx= 8 kN (where Fx is the lateral load applied to the 

column) in the left hand longitudinal shear arm of Fig. 8 at the intersection between the top 

flange and the collar around the column. The web was predicted to yield completely in shear 

at Fx=18 kN causing the stiffness of the load displacement response to soften. Subsequently, 

the shear force in the right hand fuse reduced more rapidly as Fx increased, reversing 

direction when Fx reached 20 kN. The first order capacity of Fx = 45 kN was reached when 

the right hand web yielded in shear at a lateral displacement of 19 mm. At this point, the top 

flange of the right hand fuse was in tension whereas the bottom flange was in compression. 

Both flanges were in tension when the analysis was stopped at the peak lateral displacement 

imposed in the test of 80 mm. The corresponding peak strain in the shear arms was 0.25 at the 

intersection of the left hand shear arm of Fig. 8 with the gusset plate around the column.  

Fig. 20 also shows the influence of fuse length on the calculated load displacement 

response. The fuse length was varied by changing the size of the gusset plate as described in 

Section 4.1. All the analyses were terminated when the peak strain in the top flange of the 

critically loaded shear arm reached 0.25 as in the analysis of LS-2. Reducing the fuse length 

to 45 mm, from 70 mm in the test, increased the stiffness of the response as expected. The 

capacity of the 45 mm fuse is 14% greater than that of the 70 mm fuse but its ductility is 37% 

less. Conversely, the 90 mm fuse has a 16% lower capacity than the 70 mm fuse but 18% 

greater ductility. 
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5 DESIGN CONSIDERATIONS 

In order to achieve high ductility, local buckling should be prevented in the shear 

arms, or significantly delayed, through the adoption of plastic cross-sections [18] and the 

provision of transverse stiffeners if necessary. The shearhead resistance can be split into its 

first and second order capacities with the latter being dependent on displacement. Second 

order effects can be neglected when calculating the design resistance of the shearhead system 

under seismic loading. On the other hand, the slab should be designed to resist the greatest 

possible moment that can be transferred into it from the shearhead, including its second order 

response, to comply with capacity design requirements such as that stipulated in EC8 (Clause 

2(P) of Section 2.2.4.1) [19,20].  

5.1 First order response 

The first order capacity can be calculated with plastic analysis using the collapse 

mechanisms shown in Fig. 21 in which the plastic deformation is assumed to be confined to 

the fuses. The external loads are assumed to be applied at the centreline of the column. The 

flexural resistance of the fuses is governed by their plastic moment capacity, taking due 

account of the interaction with shear. The plastic shear resistance R is governed by the 

interaction between flexure and shear which depends on the fuse length L. The latter is 

assumed to equal the distance from the outside edge of the gusset plate, around the column, to 

the centreline of the web of the channel reinforcing the edge of the gap. The failure mode 

switches from flexure to shear when the length of the hinge reduces below its characteristic 

length Lch which is given by equation (1). The flanges undergo localised flexural 

deformations at the ends of the fuse when the web deforms plastically in shear. This creates 

plastic hinges in the flanges which increases the plastic web capacity of the fuse, as described 

in previous studies on similar behaviour in column panel zones [8], with the enhancement in 
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strength becoming increasingly significant as the fuse length decreases. The shear resistance 

R of each shear hinge is given by equation (2), in which the second term represents the 

contribution from flange bending taking due account of the coexisting axial force due to 

flexure.  
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                                                                   (1) 
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where tf is the flange thickness; tw is the web thickness; L is the fuse length which is 70 mm 

for LS-1 and LS-2; w is the width of the flange; h is the depth between the centrelines of the 

flanges; 3/ywpl fhtV   is the plastic web capacity and fy is the nominal yield strength. 

Equations (3) to (6) below depict the shearhead capacities for each of the four collapse 

mechanisms shown in Fig. 21 where Mode I represents the gravity load case.  

Mode I:  RFz 4 :               0I
yM                   (3) 

Mode II:  RFVR zpl 33  :     LLFLLRMM RzRQpl
II
y  5.34)(               (4) 

Mode III:  plz VRFR  33 :       
IV
yRzRQpl

III
y MLFRLRLMM  45.0 at Fz=2R  (5) 

Mode IV: 02  zFR :         NrdtwrdtR
IV
y MMRLRLM   ,, 222               (6) 

where Fz is the gravity load from the slab, My is the maximum moment that can be transferred 

from the column into the slab and LR is the length of the rigid link (see Fig. 21) which is 170 

mm for the tested specimens LS-1 and LS-2. The flexural resistance Mpl(Q) of the least loaded 

longitudinal fuse in Modes II and III depends on the coexisting shear force Q = Fz - 3R as 

described by equation (7). Linear interpolation can be used between Mode I and Mode II and 
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between the end of Mode III and Mode IV. The torsional resistance of the transverse shear 

arms is included in Mode IV, where it is defined in terms of the direct ( NrdtM , ) and warping 

( NrdtM , ) torsional resistances in the absence of gravity loading. NrdtM , is given by equation 

(8) which can be derived using the sand heap analogy [21]. NrdtM ,  is given by equation (9) 

[22], which is based on the assumption that flexural hinges form in the flanges at the ends of 

the fuse where warping is restrained. The torsional resistance is assumed to reduce linearly to 

zero as Fv is increased from zero to 2R. 
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5.2 Geometric nonlinearities and ductility demands 

Geometric nonlinearity induces tensile forces into the fuses which enhance the system 

capacity above that calculated with first order analysis. The second order shear resistance R2 

of the fuses can be estimated in terms of their angular displacement as follows: 


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22
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22

2 N
Lf

wt
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L

t
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f
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plf
ypl                                                                  (10) 

where N  is the tensile force in the fuse,  is its angular displacement,  = N/A where A is the 

cross-sectional area of the fuse  and Vpl is the plastic web shear capacity in the presence of N 

which is given by:  
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The peak angular displacement maxof the shear hinges in the longitudinal shear arms 

can be calculated in terms of the specified drift ratio DR and the shearhead geometry with 

equations (12) to (14).  

Mode II:  
 

L

LLD RRII 


2
max                                                                          (12) 

Mode III:  
 
L

LD RRIII 2
max                                                                            (13) 

Mode IV:  
L

LD RRIV max                                                                                      (14) 

The ductility demand is satisfied if u max where 
L
ufuse

u


 , in which ufuse is the 

vertical displacement between the ends of the fuse at failure. u was 0.18 in test LS-2 for 

which  sin . The second order load resistances Fz and My corresponding to modes I to IV 

can be estimated with equations (15) to (18) which are derived from considerations of 

equilibrium. Linear interpolation can be used between Modes I and II and between Modes III 

and IV. The angular displacements  are assumed to be the same in both the longitudinal and 

transverse shear hinges in modes II and III to simplify the analysis. This assumption is 

conservative in the sense that it increases the maximum moment that can be transferred into 

the slab.  

Mode I: 22 4RFz  :    02 
I
yM                              (15) 

Mode II: 222 33 RFVR zpl  :     γNLLLFLLRMM RzRQpl
II
y 5.05.34 22)(2      (16) 

 



24 
 

Mode III: plz VRFR  222 33 : 

  
IV
yRzRQpl

III
y MγNLLFLRLRMM  5.045.0 2222  at Fz=2R2        (17) 

Mode IV: 02 22  zFR :             NrdtwrdtR
IV
y MMγNLLRLRM   ,,222 222          (18) 
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Table 7 compares the predictions of the first and second order analytical models with 

those of NLFEA, with and without geometric nonlinearity at various gravity loads. The 

limiting rotation γmax was taken as 0.18 radians in the analytical method as this was the value 

measured at failure in test LS-2. The axial force N in equation (10) was chosen by trial and 

error to maximise the shear resistance R2 for  = 0.18. The resulting value of N was 256 kN 

which compares very favourably with the value of around 265 kN shown in Fig. 18. All the 

predictions neglect the effect of strain hardening as well as material over-strength, yet it is 

assumed that these would be captured by the strength factors adopted in capacity design 

procedures. The limiting angular displacement of 0.18 radians measured in test LS-2 is rather 

greater than the limit of 0.08 radians typically suggested for short links in eccentrically 

braced frames [20]. Therefore, it is suggested that in the absence of better information γu is 

taken as 0.08 radians when considering drift limits for the proposed shearhead system. On the 

other hand, it is suggested that γu should be taken as 0.18 radians when calculating the second 
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order moment resistance of the shearhead system as this provides an upper bound to the 

moment transferred into the slab.  

Fig. 22 shows the interaction between the flexural and gravity load resistances 

calculated with the first (equations (3) to (6)) and second order analytical relations (equations 

(15) to (18)).  The figure includes relevant test data as well as the results from the NLFEA 

which was carried out to verify the analytical procedure. The NLFEA and the analytical 

model underestimate the measured strength of the connection since strain hardening was not 

considered as discussed previously. Therefore, the predictions of the analytical model should 

be compared with the NLFEA. The analytical model is seen to underestimate the first order 

moment capacity under lateral loading which is conservative for the design of the shearhead. 

On the other hand, the second order analytical model gives very good estimates of the 

moment capacities predicted by NLFEA for the range of Fz likely to arise under seismic 

loading despite remaining largely conservative for unrealistically low or high values of Fz.  

5.3 Punching shear capacity 

The punching shear capacity of the proposed shearhead system cannot be definitively 

established since punching failure did not occur in the tested specimens LS-1 and LS-2. 

Furthermore, the contribution of the shear arms to the shear strength is uncertain since the 

shear arms did not act as cantilever beams as in the fully embedded ACI-type shearhead 

tested previously [9]. This is illustrated in Figs. 17 and 18 which show that the primary 

functions of the embedded length of the shear arms in the proposed detail are to rotationally 

restrain the arm at its intersection with the collar (see Fig. 18) and to provide tensile 

anchorage, rather than to collect shear forces from the slab. It is therefore recommended that 

the embedded length of the shear arm should be neglected when calculating the critical shear 

perimeter.  
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The shear strength of the connection was estimated using the recommendations of 

Chana and Birjandi [6] as previously implemented by the authors [9]. The shear resistance 

under concentric gravity loading was calculated as Vout = vrdcU1d where vRdc is the basic shear 

resistance given by EC2 [23] which is 1.16 MPa for the tested slabs (with c=1 where c is the 

partial factor for concrete), d is the mean effective slab depth and U1 is the critical shear 

perimeter. The design shear stress vEd under eccentric loading was calculated in accordance 

with equation 6.38 in EC2 as follows: 

dU

V
v Ed

Ed
1

                                                                                                                            (21) 
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where k = 0.6 in this case since the effective column is square, MEd is the moment transferred 

into the column and W1 is the first moment of area of the shear perimeter U1 about its 

centroid. 

U1 was calculated neglecting the shear arms since their contribution to shear 

resistance is uncertain as discussed above. The shear perimeter was consequently assumed to 

be a square perimeter of length U1 located at 1.25d from the outer perimeter of the collar as 

suggested previously [6, 9]. The length U1 and first moment of area W1 of the critical shear 

perimeter are given by equations (31) and (32) respectively. 

dlU c 1041                                                         (23) 
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where lc denotes the outmost collar edge length of 680 mm and d denotes the mean effective 

slab depth which was 123 mm for slabs LS-1 and LS-2.  

The punching resistance was calculated to be 563 kN under concentric gravity loading 

which is only slightly smaller than the peak load of 570 kN applied in test LS-1 which was 

insufficient to cause failure.  The moment required to induce punching failure under a 

coexistent gravity load of 250 kN was calculated to be 194 kNm which is significantly 

greater than the maximum applied moment of 83 kNm. Slightly greater, but still reasonable, 

estimates of punching resistance are obtained with EC2 if calculated for a square column with 

sides of length lc (i.e. 680 mm square). In this case, the punching resistance is calculated to be 

609 kN under concentric gravity loading which is slightly greater than the peak load of 570 

kN applied in test LS-1. This suggests that the shearhead increased the effective column size 

to at least the outer dimensions of the shearhead in tests LS-1 and LS-2. This conclusion is 

further supported by the fact that a peak load of 215 kN was measured in slab panel test 

SPT2-3 in which the same edge channel, welded U bars and shear arm detail was used as in 

tests LS-1 and LS-2. Slab panel test SPT2-5, with welded U bars, suggests that the punching 

capacity would not have been significantly affected by reducing the section thickness of the 

edge channel to 5 mm but this would need to be confirmed with further testing.   

 

6 CONCLUSION 

This paper proposes a shearhead system for connecting reinforced concrete flat slabs 

to steel columns. The system incorporates a novel detail in which a gap is left in the slab 

around the column to enable the isolated shear arms to yield in shear before punching failure 

occurs within the slab. The system is shown by testing and numerical analysis to provide 

favourable performance under both gravity and cyclic loading in comparison with 



28 
 

conventional fully embedded ACI-type shearheads. Nonlinear finite element analysis showed 

that the lateral resistance of the connection is significantly increased by cyclic strain 

hardening of the shear arms. The experimental and numerical findings were used to develop 

design considerations and recommendations. The shear arms should be designed to yield in 

shear within the gap before the slab fails in punching. The slab-panel component tests 

showed that I-sections perform better as shear arms than closed box sections due to improved 

composite action with the slab. The shear arms should be anchored to the concrete with end 

plates or otherwise to resist the significant axial forces which arise as a result of geometric 

nonlinearity. The edge of the opening in the slab around the column should be reinforced 

with a steel channel which should be tied into the slab with welded U bars or similar details. 

Low cycle fatigue should also be considered in the design of the welding details. In order to 

satisfy the requirements of capacity design, a procedure for evaluating the dependable 

strength as well as over-strength of the system was proposed and discussed. 
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Specimen 
Shear arm 

length 
Shear arm 

Edge 
reinforcement

Peak load 
[kN] 

SPT1-1 250mm 
60×100×6.3 

RHS   
- 

40 

SPT1-2 250mm I# - 70 

SPT1-3 250mm I# 
PFC-

150×90×24 
135 

 

Note: # Fabricated from 60×100×6.3 RHS   

 
Table 1: Properties and failure loads for Series 1 slab panel tests 
 

 

Specimen 
Shear 
arm 

length# 
Edge reinforcement

Welded  

U-bars 
Anchor

SPT2-1 150mm PFC-150x90x24 2T16 U bars No 

SPT2-2 340mm PFC-150x90x24 No No 

SPT2-3 250mm PFC-150x90x24 2T16 U bars Yes† 

SPT2-4 250mm PFC-150x90x24 2T16 U bars No 

SPT2-5 250mm C-150x90x5 cold f. 2T16 U bars No 

SPT2-6 250mm PFC-150x90x24 No Yes† 

 

Note: # Fabricated from pairs of RSC-51×38 hot rolled steel channel (RSC) sections welded 
back-to-back. † 150mm long section of RSC-51×38 

 
Table 2: Properties for Series 2 slab panel tests 
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Specimen E0 σ02 σu εL 

- [GPa] [MPa] [MPa] - 

T12 rebar 200 552 617 0.14 

RHS 100x60x6 198 405 484 0.27 

RSC-51x38 210 300 401 0.41 

 

Note: σ02 is the 0.2% proof stress, εL is the percentage elongation at fracture 

 
Table 3: Mean steel properties for shear arms and reinforcement 
 

 

Specimen Fp ep Fp/Fu ep/ey Fdeg 

 [kN] [mm] [1] [1] [%] 

SPT2-1 195 15.75 1.47 4.85 20 

SPT2-2 175 14.00 1.97 2.07 25 

SPT2-3 215 18.75 1.25 4.83 27 

SPT2-4 212 15.12 1.75 3.02 19 

SPT2-5 205 13.87 1.60 2.46 22 

SPT2-6 123 14.25 1.76 7.58 28 

 

 

Note: Fp denotes the peak load, Fu denotes the load at the ultimate displacement of 28mm, ep 
denotes the peak displacement, ey is the yield displacement as stipulated in [5] and Fdegr is the 
degradation of the peak load.   

Table 4: Strength and ductility for Series 2 slab panel tests 
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fc’ ft fy-sh fy-rft εc Ec Gf β 

[MPa] [MPa] [MPa] [MPa] - [MPa] [mJ/mm2] - 

38 1.5 300 560 0.003 21075 0.067 0.1 

 

Note: fc’ = concrete uniaxial compressive strength, ft = concrete tensile strength, fy-sh = yield 

strength of shearhead, fy-rft = yield strength of reinforcement, c = strain at peak concrete 

stress, Ec = elastic modulus for concrete, Gf= tensile fracture energy,  = shear retention 
factor.    

 
Table 5: Material properties used in NLFEA 
 

 

 

 

Specimen Fz test F1z n F2z n Mtest M1
n M2

n M2h
n DRtest DRn 

[kN] [kN] [kN] [kNm] [kNm] [kNm] [kNm] [%] [%] 

LS-1 570† 430 615 0 0 - - - - 

LS-2 200 200 200 83 53 61 83 6.8 6.8 

 

Notes: Fz = gravity load, indices ‘1’, ‘2’ and ‘2h’ depict first and second order results with 
(h) and without strain hardening respectively, indices ‘test’ and ‘n’ depict ‘measured’ and 
‘numerical’ results, DR = drift ratio, † denotes that the test was stopped before failure when 
the applied load equalled the rig capacity. 

 

Table 6: Comparison of measured and predicted response of LS slab tests 
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Fz M1
a M1

n M1
a/M

1
n M2

a M2
n M2

a/M
2
n DRa DRn 

[kN] [kNm] [kNm] [1] [kNm] [kNm] [1] [%] [%] 

0 52.6 58 0.91 66.6 73 0.91 7.0 7.7 

200 44.0 53 0.83 59.7 62 0.96 7.0 6.8 

300 30.9 40 0.77 46 46 1.00 3.5 4.0 

400 4.7 17 0.28 28.5 27 1.06 2.9 3.3 

 

Notes: Fz = gravity load, indices ‘1’ and ‘2’ depict first and second order results respectively 
all without strain hardening, indices ‘a’ and ‘n’ depict ‘analytical’ and ‘numerical’ results, 
DR = drift ratio for γmax= 0.18. 

 

Table 7: Comparison of numerical and analytical predictions of shearhead performance 
under lateral loading 
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Figure 1: Test rig used for large scale tests 
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Figure 2: Shearhead used in tests LS-1 and LS-2 
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Figure 3: Slab panel test rig 
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Figure 4: Details of slab panel specimens (drawn with box section and no edge channel) 
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Figure 5a: Details of steel sections used in slab panel specimens  

 

 

 

 

Figure 5b: Plan view and cross-section of slab panel specimen with edge channel 
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Figure 5c: Comparison of concrete failure cones for box and “I” sections.  
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Figure 6: SPT2-3 detail with main reinforcement prior to casting 
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Figure 7: Hysteretic response of slab panel tests; a) SPT1-1, b) SPT1-2, c) SPT1-3.  

a) b) 

c) 

SPT1-3 
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Figure 8: Shear cracking in front face of slab panel adjacent to edge channel in test SPT2-3 
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Figure 9: Hysteretic response of slab panel tests; a) SPT2-1, b) SPT2-2, c) SPT2-3,  

d) SPT2-4, e) SPT2-5 and f) SPT2-6 

a) 

b) 

c) 

d) 

e) 

f) 



46 
 

 

 

Figure 10:  Top and bottom reinforcement in large scale slab tests 
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Figure 11: Crack pattern at end of test LS-1 



48 
 

 

 

Note: L = length of exposed shear arm in gap, Fully integrated = specimen H1 [9]. 

 
Figure 12: Measured and predicted load displacement curves for gravity tests LS-1 and H1 
[9]. 
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Figure 13: Loading regime for cyclic lateral large scale testing 
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a) 

 

b) 

 

Figure 14: Measured hysteretic responses of a) partially integrated (Test LS-2) and b) fully 
integrated shearhead (Test H1 [10]) 
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Figure 15: Axial strains measured in top flange of longitudinal and transverse shear arms (a) 
adjacent to gusset plate and (b) adjacent to collar. 
 

 

 

Figure 16: Plastic axial strain Epxx contours in longitudinal fuse at ultimate load of 615 kN 

 

(a) 
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Figure 17: Shear force distribution in web along the shear arm at elastic limit (180 kN) and 
ultimate (615 kN) loads 

 

Figure 18: Axial force distribution along shear arm at elastic limit (180 kN) and ultimate 
(615 kN) loads 
 
 



53 
 

 

Figure 19: Bending moment distribution along shear arm at elastic limit (180 kN) and 
ultimate (615 kN) loads 
 

 

Figure 20: Predicted responses versus backbone curve for Test LS-2. 
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Figure 21: Plastic shear failure modes for shearhead system 
 

 

 

Mode IV 

Mode III 

Mode II 

Mode I 
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Figure 22: First and second order moment-gravity load interaction diagram 
 

 


